
DRA
FT

Usual Pegasus: Phase 1
Security Review

Cantina Managed review by:
Deadroses.xyz, Lead Security Researcher
Phaze, Security Researcher
Chinmay Farkya, Associate Security Researcher

November 1, 2024

DRA
FT

Contents
1 Introduction 21.1 About Cantina . 21.2 Disclaimer . 21.3 Risk assessment . 21.3.1 Severity Classification . 2
2 Security Review Summary 3

3 Findings 43.1 Medium Risk . 43.1.1 PAR mechanismmistakenly transfers USD0 tokens to AirdropDistribution contractinstead of treasury . 43.2 Low Risk . 43.2.1 Timestamp parameters can be desynchronized from the vesting schedule 43.2.2 Penalties can be applied to past and future months . 53.2.3 Front-running penalties is possible by claiming early . 63.2.4 [REDACTED] . 73.3 Gas Optimization . 73.3.1 Claim() can be optimized for cases when merkle root is not set 73.3.2 Full precision math is not strictly required . 73.4 Informational . 93.4.1 Dead logic and constants . 93.4.2 Documentation errors . 93.4.3 Wrong error used in initialize() function of AirdropDistribution contract 9

1

DRA
FT

1 Introduction

1.1 About Cantina
Cantina is a security servicesmarketplace that connects top security researchers and solutionswith clients.Learn more at cantina.xyz
1.2 Disclaimer
CantinaManagedprovides a detailed evaluation of the security posture of the code at a particularmomentbased on the information available at the time of the review. While CantinaManaged endeavors to identifyand disclose all potential security issues, it cannot guarantee that every vulnerability will be detected orthat the code will be entirely secure against all possible attacks. The assessment is conducted based onthe specific commit and version of the code provided. Any subsequent modifications to the code mayintroduce new vulnerabilities that were absent during the initial review. Therefore, any changes madeto the code require a new security review to ensure that the code remains secure. Please be advisedthat the Cantina Managed security review is not a replacement for continuous security measures such aspenetration testing, vulnerability scanning, and regular code reviews.
1.3 Risk assessment

Severity Description

Critical Must fix as soon as possible (if already deployed).

High Leads to a loss of a significant portion (>10%) of assets in the protocol, or sig-nificant harm to a majority of users.

Medium Global losses <10% or losses to only a subset of users, but still unacceptable.

Low Losses will be annoying but bearable. Applies to things like griefing attacks thatcan be easily repaired or even gas inefficiencies.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.
1.3.1 Severity Classification

The severity of security issues found during the security review is categorized based on the above table.Critical findings have a high likelihood of being exploited and must be addressed immediately. High find-ings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be fixedas soon as possible.
Medium findings are conditionally possible or incentivized but are still relatively likely to occur and shouldbe addressed. Low findings a rare combination of circumstances to exploit, or offer little to no incentiveto exploit but are recommended to be addressed.
Lastly, some findings might represent objective improvements that should be addressed but do not im-pact the project’s overall security (Gas and Informational findings).

2

https://cantina.xyz

DRA
FT

2 Security Review Summary

Usual is a Stablecoin DeFi protocol that redistributes control and redefines value sharing. It empowersusers by aligning their interests with the platform's success.
USD0 is a USUAL native stablecoin with real-time transparency of reserves, fully collateralized by US Trea-sury Bills. This eliminates fractional reserve risks and protects against the bankruptcy risks of fiat-backedstablecoins.
$USD0 can be locked into $USD0++, a liquid 4-year bond backed 1:1, offering users the alpha-yield dis-tributed as points and ensuring at least the native yield of their collateral. This provides enhanced stabilityand attractive returns for holders.
From Oct 8th to Oct 22nd the Cantina team conducted a review of pegasus on commit hash 747f595f.The team identified a total of 10 issues in the following risk categories:

• Critical Risk: 0
• High Risk: 0
• Medium Risk: 1
• Low Risk: 4
• Gas Optimizations: 2
• Informational: 3

3

https://github.com/usual-dao/pegasus
https://github.com/usual-dao/pegasus/commit/747f595f0e93f7b3cfda6dd4877574888404a385

DRA
FT

3 Findings

3.1 Medium Risk
3.1.1 PARmechanismmistakenly transfers USD0 tokens to AirdropDistribution contract instead

of treasury

Severity: Medium Risk
Context: Usd0PP.sol#L347-L402
Description: The USD0++ token's Parity Arbitrage Right (PAR) mechanism contains a mistake in its imple-mentation. When activated, excess USD0 tokens are incorrectly sent to the AirdropDistribution contractinstead of the intended DAO treasury, potentially making funds inaccessible.
The USD0++ token includes a PAR mechanism designed to stabilize its price relative to USD0 when it fallsbelow parity on the open market. This mechanism can be activated when more USD0++ tokens existon the market than USD0 tokens And the price ratio of USD0:USD0++ is below 1. When triggered, themechanism unwraps USD0++ for USD0 and exchanges it on the market to support the USD0++ price. Anyexcess USD0 received from this operation is supposed to be sent to the DAO's treasury.
However, the current implementation incorrectly forwards this excess amount to the AirdropDistribu-

tion contract. This contract is not designed to hold tokens and lacks methods for transferring them out,potentially leading to locked funds.
Impact: The impact of this vulnerability can potentially be significant, as funds are effectively locked in the
AirdropDistribution contract. Yet, as the contract is upgradeable the impact can be lowered to medium.Further, addressing this in an emergency upgrade carries its own risks and complications.
Likelihood: The likelihood of this issue occurring is high when the PAR mechanism is activated. The PARmechanism itself is, however, not intended to be used frequently lowering the likelihood of the vulnera-bility occurring to medium.
Recommendation: To address this issue, modify the triggerPARMechanismCurvepool function in the
Usd0PP contract to transfer the USD0 tokens to the correct address:

usd0.safeTransfer(

- $.registryContract.getContract(CONTRACT_AIRDROP_DISTRIBUTION), gainedUSD0AmountPAR

+ $.registryContract.getContract(CONTRACT_TREASURY), gainedUSD0AmountPAR

);

Usual: Fixed in commit ae6ea94e.
Cantina Managed: Fixed.
3.2 Low Risk
3.2.1 Timestamp parameters can be desynchronized from the vesting schedule

Severity: Low Risk
Context: AirdropDistribution.sol#L146-L180, AirdropTaxCollector.sol#L126-L145, Usd0PP.sol#L181-L195
Description: The AirdropTaxCollector contract's initializer function requires a start date parameter,which is stored and used in calculations such as the claim tax amounts and the claiming period windows.This start date is also used in the AirdropDistribution contract.
Currently, deployment scripts initialize this date using a predefined constant: AIRDROP_INITIAL_START_-
TIME = 1_734_004_800 (Dec 12 2024 12:00:00 GMT+0000). Even though this value is stored in the con-tract's storage, it is not modifiable. Changing this date after deployment could potentially impact othercontracts that assume it remains constant.
The AirdropDistribution contract's calculation for available airdrop tokens assumes a fixed start date, asthe vesting schedule is also fixed. Additionally, in the Usd0PP, the early unlock period for bonds is definedto last 19 days from the vesting start date, ending at END_OF_EARLY_UNLOCK_PERIOD = 1_735_686_000 (31stDec 2024 23:00:00 GMT+0000).

4

https://github.com/usual-dao/pegasus/blob/747f595f0e93f7b3cfda6dd4877574888404a385/packages/solidity/src/token/Usd0PP.sol#L347-L402
https://github.com/usual-dao/pegasus/commit/ae6ea94e6c972d40424f9a78aa7f176313942284
https://github.com/usual-dao/pegasus/blob/747f595f0e93f7b3cfda6dd4877574888404a385/packages/solidity/src/airdrop/AirdropDistribution.sol#L146-L180
https://github.com/usual-dao/pegasus/blob/747f595f0e93f7b3cfda6dd4877574888404a385/packages/solidity/src/airdrop/AirdropTaxCollector.sol#L126-L145
https://github.com/usual-dao/pegasus/blob/747f595f0e93f7b3cfda6dd4877574888404a385/packages/solidity/src/token/Usd0PP.sol#L181-L195
https://github.com/usual-dao/pegasus/blob/747f595f0e93f7b3cfda6dd4877574888404a385/packages/solidity/src/token/Usd0PP.sol#L181-L195

DRA
FT

This predefined timeline eliminates the need for configurable parameters thatmight be overlookedduringsetup or become desynchronized if one date changes. Using constants for these dates can improve theclarity and robustness of contracts. Alternatively, computing all dates relative to a single, centrally definedstart date would make time adjustments easier if necessary.
Recommendation:

1. Simplify the AirdropTaxCollector contract by hardcoding the known start and end dates (replacing
$.startDate).

2. In the AirdropDistribution contract, use the fixed, known start date instead of $.startTime.
3. Define the bond early unlock period based on the known start date.

Usual: Partially fixed in commit c7383554. We've fixed the first two points by hardcoding the start datein the AirdropTaxCollector and using the fixed start date in the AirdropDistribution. The third point re-mains unchanged as the early unlock period is managed by an admin-only function, and we've scheduledits start.
3.2.2 Penalties can be applied to past and future months

Severity: Low Risk
Context: AirdropDistribution.sol#L192-L215, AirdropDistribution.sol#L365-L394
Description: The airdrop system for users in the "top 80" group includes a penalty mechanism that canreduce their token allocation if they violate certain terms. These penalties can be applied monthly, up to100% of the allocation for each month. While users can claim their airdrop tokens monthly, the currentsystem allows for an unclear and potentially unfair application of penalties:
1. Retroactive penalties: Penalties can be applied to past months, potentially wiping out unclaimedbalances from periods when the user was compliant.
2. Future penalties: The system allows penalties to be applied to future months, immediately voidingupcoming claims.
3. Tax payment loophole: Users can still pay taxes to claim some earnings, but this triggers an addi-tional month of penalty, further reducing their allocation.

This system creates the potential for an unjust treatment and can lead to confusion around the terms andthe airdrop rewards.
Proof of Concept:

• Scenario 1: Retroactive penalties. Alice hasn't claimed her tokens for 3 months:
Month 1 2 3

Claimable 100 200 300Penalty 0 0 0

After an action that displeases the team, all previous months are penalized:
Month 1 2 3

Claimable 0 0 0Penalty 100 200 300

Alice loses the 300 tokens she should have been able to claim.
• Scenario 2: Future penalties. Alice claimed all earnings up to month 3:

Month 1 2 3 4 5 6
Claimable 0 0 0 100 200 300Penalty 0 0 0 0 0 0

5

https://github.com/usual-dao/pegasus/commit/c7383554a4be4540e549c5b11fbae7d945b0e3d6
https://github.com/usual-dao/pegasus/blob/747f595f0e93f7b3cfda6dd4877574888404a385/packages/solidity/src/airdrop/AirdropDistribution.sol#L192-L215
https://github.com/usual-dao/pegasus/blob/747f595f0e93f7b3cfda6dd4877574888404a385/packages/solidity/src/airdrop/AirdropDistribution.sol#L365-L394

DRA
FT

Team applies future penalties:
Month 1 2 3 4 5 6

Claimable 0 0 0 0 0 0Penalty 0 0 0 100 200 300

Alice loses all future claims instantly.
• Scenario 3: Tax payment loophole. After applying the future penalties in scenario 2, Alice can exer-cise the option to pay the tax for month 4. Thereby she can redeem a leftover claim of 200 tokensbypassing the 300 token penalty.

Month 1 2 3 4 5 6
Claimable 0 0 0 0 100 200Penalty 0 0 0 100 0 0

Recommendation: Limit the penalty application to the upcoming month only. For example, behaviorfrommonth 0 to 1 should only affect the claim for month 1. And behavior frommonth 5 to 6 should onlyaffect month 6. Applying these changes would make the penalty system more predictable and fair forusers.
Usual: Partially fixed in c7383554. We've addressed point 1 by removing retroactive penalties, as settingpenalties for past months was unnecessary. However, penalties for future months remain since we planto apply them just before the next month starts and we do not want to restrict it further. For point 3, thepenalty is still deducted even if the user pays taxes, as it applies to the following month when a penalty isplanned.
3.2.3 Front-running penalties is possible by claiming early

Severity: Low Risk
Context: AirdropDistribution.sol#L316-L343, AirdropDistribution.sol#L365-L394
Description: The airdrop system for "top 80" users contains a vulnerability that allows users to potentiallyevade penalties by quickly claiming their tokens upon seeing an incoming penalty transaction.
The airdrop system includes a penalty mechanism for users who violate certain terms. However, thecurrent implementation allows for a scenario where users can avoid these penalties:
1. Users can monitor the mempool for incoming penalty transactions.
2. Upon detecting a penalty, users can quickly pay the tax for early claims.
3. Users can then immediately claim their outstanding airdrop tokens.
4. The incoming penalty becomes ineffective as there are no more unclaimed tokens to penalize.

This option could undermine the penalty system and allow users avoid consequences for violating theairdrop terms.
Impact: Exploiting this vulnerability could give certain users an unfair advantage. However, the potentialgain is diminished by the amount of tax that must be paid upon claiming tokens early.
Likelihood: The likelihood of this vulnerability being exploited is considered low, as it requiresmonitoringthe mempool and technical knowledge to execute the required transactions quickly to avoid the penalty.
Proof of Concept:

1. Alice sees a transaction in the mempool to penalize her airdrop allocation.
2. Alice calls payTaxAmount, paying the tax for an early claim.
3. Alice immediately calls claim to claim her outstanding allocation.
4. The incoming penalty does not apply to Alice as she has claimed all outstanding tokens.

6

https://github.com/usual-dao/pegasus/commit/c7383554a4be4540e549c5b11fbae7d945b0e3d6
https://github.com/usual-dao/pegasus/blob/747f595f0e93f7b3cfda6dd4877574888404a385/packages/solidity/src/airdrop/AirdropDistribution.sol#L316-L343
https://github.com/usual-dao/pegasus/blob/747f595f0e93f7b3cfda6dd4877574888404a385/packages/solidity/src/airdrop/AirdropDistribution.sol#L365-L394

DRA
FT

Recommendation: To address this issue, consider introducing a small time delay window (e.g., 1 hour)between paying the tax and allowing the next claim. Alternatively, given the low likelihood, the projectcould simply accept the risk.
Usual: Acknowledged. We didn't fix this issue, as we accept the risk. Paying the tax benefits the proto-col, so the impact is minimal. Implementing an anti-frontrun mechanism would be too complex for thisscenario and isn't necessary given the low severity of the finding.
3.2.4 [REDACTED]

Severity: Low Risk
Description: [REDACTED]

Usual: Not acknowledged.
(Redacted until 31th of December).

3.3 Gas Optimization
3.3.1 Claim() can be optimized for cases when merkle root is not set

Severity: Gas Optimization
Context: AirdropDistribution.sol#L316-L330
Description: Claim() function verifies that the merkle proof shared by claimer is valid and if it evaluatesto the airdrop merkle root set by admin. But it does not check that the merkle root actually exists in the
AirdropDistribution contract.
In case the merkle root == bytes(0), the likelihood of this getting exploited is very low, but checking thisfirst in the claim() flow can save some gas by reverting early.
Recommendation: Add a check require($.merkleRoot != 0); at the start of the claim() function forbetter code clarity, this also saves some gas by reverting early in case its not set.
Usual: Not fixed. We didn't address this finding, as the merkle root will be set before the airdrop starttime. Since the likelihood of exploitation is very low, we opted not to add an extra check for an emptymerkle root in the claim() function.
3.3.2 Full precision math is not strictly required

Severity: Gas Optimization
Context: AirdropDistribution.sol#L192-L215
Description: The codebase uses full precision math whenever fractions are computed. While this canprevent overflow issues and allows for specifying a rounding direction, in most cases it is not requiredadding unnecessary computational overhead.
When the claimable token amount is computed in the AirdropDistribution contract, the total availableamount is multiplied by the number of months passed and divided by the number of months in total.
claimableAmount = totalAmount.mulDiv(monthsPassed, AIRDROP_VESTING_DURATION_IN_MONTHS);

This calculation could overflow if the total amount exceeded (2256 − 1)/6. This would require a user toreceive a token allocation exceeding 19298681539552699237261830834781317975544997444273427339909 · 1018tokens, an unlikely high amount.
When the penalty amount is computed, first the monthly amount is computed, rounding up.
uint256 oneSixthAmount =

totalAmount.mulDiv(1, AIRDROP_VESTING_DURATION_IN_MONTHS, Math.Rounding.Ceil);

As the total amount is multiplied by one and then divided, the full precision computation is not required.A rounding direction is given, which rounds against the user. However, the effective maximum differencewill be less than 6 wei tokens, a negligible amount. This amount is further capped, such that the penalty

7

https://github.com/usual-dao/pegasus/blob/747f595f0e93f7b3cfda6dd4877574888404a385/packages/solidity/src/airdrop/AirdropDistribution.sol#L316-L330
https://github.com/usual-dao/pegasus/blob/747f595f0e93f7b3cfda6dd4877574888404a385/packages/solidity/src/airdrop/AirdropDistribution.sol#L192-L215

DRA
FT

cannot exceed the claimable amount. Rounding in favor of the user has no further implications for thesolvency of the protocol in this case.
When accumulating the total penalty, themonthly available amount is multiplied by the fractional penaltyamount.
uint256 monthlyPenalty =

oneSixthAmount.mulDiv($.penaltyPercentageByMonth[account][i], BASIS_POINT_BASE);

This computation could only overflow if the total allocation for a user exceeded
(2256 − 1) · 6

10000 = 69475253542389717254142591005212744711961990799384338423 · 1018tokens.
If more precision is desired, the multiplication can be performed first before the division. The tax feecalculation in the AirdropTaxCollector contract also uses full precision math.
uint256 taxFee = $.maxChargeableTax.mulDiv(claimingTimeLeft, AIRDROP_CLAIMING_PERIOD_LENGTH);

claimTaxAmount = claimerUsd0PPBalance.mulDiv(taxFee, BASIS_POINT_BASE);

For similar reasons as stated before, these calculations do not require full precision math and do notspecify a rounding direction, making it safe to replace these with the default math operations.
Recommendation: Consider only applying full precision fractional calculations when it is necessary anduse default math calculations in order to reduce complexity and save gas.

• AirdropDistribution:
```diff

- claimableAmount = totalAmount.mulDiv(monthsPassed, AIRDROP_VESTING_DURATION_IN_MONTHS);

+ claimableAmount = totalAmount * monthsPassed / AIRDROP_VESTING_DURATION_IN_MONTHS;

```

```diff

- uint256 monthlyPenalty =

- oneSixthAmount.mulDiv($.penaltyPercentageByMonth[account][i], BASIS_POINT_BASE);

+ uint256 monthlyPenalty =

+ totalAmount * $.penaltyPercentageByMonth[account][i] / BASIS_POINT_BASE / 6;

```

• AirdropTaxCollector:
```diff

- uint256 taxFee = $.maxChargeableTax.mulDiv(claimingTimeLeft, AIRDROP_CLAIMING_PERIOD_LENGTH);

- claimTaxAmount = claimerUsd0PPBalance.mulDiv(taxFee, BASIS_POINT_BASE);

+ uint256 taxFee = $.maxChargeableTax * claimingTimeLeft / AIRDROP_CLAIMING_PERIOD_LENGTH;

+ claimTaxAmount = claimerUsd0PPBalance * taxFee / BASIS_POINT_BASE;

```

More precision can be achieved by first multiplying all factors and then dividing.

```diff

- uint256 taxFee = $.maxChargeableTax.mulDiv(claimingTimeLeft, AIRDROP_CLAIMING_PERIOD_LENGTH);

- claimTaxAmount = claimerUsd0PPBalance.mulDiv(taxFee, BASIS_POINT_BASE);

+ claimTaxAmount = claimerUsd0PPBalance * $.maxChargeableTax * claimingTimeLeft /

AIRDROP_CLAIMING_PERIOD_LENGTH / BASIS_POINT_BASE;↪→

```

Usual: Not fixed. We didn't make changes to this finding, as the current use of mulDiv is consistent acrossthe contract. Additionally, removing the ceiling rounding would leave some dust amounts, which we wantto avoid.

8

DRA
FT

3.4 Informational
3.4.1 Dead logic and constants

Severity: Informational
Context: Usd0PP.sol#L537-L553
Description: _createUsd0PPCheck function in USD0PP.sol is dead code, not used anywhere in the code-base. Also, there are some constants that are unused currently. These are roles that have been grantedbut no actions are associated with these roles in current code :

• SWAPPER_ENGINE

• CONTRACT_ORACLE_USUAL

• GAMMA_PRECISION

• BOND_START_DATE

• ADMIN

Recommendation: Remove the _createUsd0PPCheck function, and the constants (roles) if they are notrequired.
Usual: Fixed in c7383554. The _createUsd0PPCheck function is used in src/mock/token/Usd0PPHarness.sol::Usd0PPHarness:initialize.But to simplify the Usd0PP.sol contract, we've moved the code directly into Usd0PPHarness.sol. We havealso removed the unused constants.
3.4.2 Documentation errors

Severity: Informational
Context: IUsd0PP.sol#L34, IUsd0PP.sol#L98
Description: At several places in the codebase, comments need to be corrected.
1. IUSD0PP.sol::mintWithPermit() ⇒ should be Transfers collateral Usd0 tokens and mints

Usd0PP bonds.
2. IUSD0PP.sol::setBondEarlyUnlockDisabled() ⇒ should be Only callable by airdrop tax

collector contract.
Recommendation: Apply the mentioned changes.
Usual: Fixed in commit c7383554.
3.4.3 Wrong error used in initialize() function of AirdropDistribution contract

Severity: Informational
Context: AirdropDistribution.sol#L163-L165
Description: In the initializing logic of AirdropDistribution.sol, if the airdrop start time is not in thecorrect range (ie. before FIRST_AIRDROP_VESTING_CLAIMING_DATE), then the initialization reverts with anerror AmountTooBig().
This error is not relevant to this check.
Recommendation: Use error InvalidClaimingPeriodStartDate() in place of AmountTooBig().
Usual: Fixed in commit c7383554. We now use the InvalidClaimingPeriodStartDate() error instead of
AmountTooBig().

9

https://github.com/usual-dao/pegasus/blob/747f595f0e93f7b3cfda6dd4877574888404a385/packages/solidity/src/token/Usd0PP.sol#L537-L553
https://github.com/usual-dao/pegasus/commit/c7383554a4be4540e549c5b11fbae7d945b0e3d6
https://github.com/usual-dao/pegasus/blob/747f595f0e93f7b3cfda6dd4877574888404a385/packages/solidity/src/interfaces/token/IUsd0PP.sol#L34
https://github.com/usual-dao/pegasus/blob/747f595f0e93f7b3cfda6dd4877574888404a385/packages/solidity/src/interfaces/token/IUsd0PP.sol#L98
https://github.com/usual-dao/pegasus/commit/c7383554a4be4540e549c5b11fbae7d945b0e3d6
https://github.com/usual-dao/pegasus/blob/747f595f0e93f7b3cfda6dd4877574888404a385/packages/solidity/src/airdrop/AirdropDistribution.sol#L163-L165
https://github.com/usual-dao/pegasus/commit/c7383554a4be4540e549c5b11fbae7d945b0e3d6

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	Medium Risk
	PAR mechanism mistakenly transfers USD0 tokens to AirdropDistribution contract instead of treasury

	Low Risk
	Timestamp parameters can be desynchronized from the vesting schedule
	Penalties can be applied to past and future months
	Front-running penalties is possible by claiming early
	[REDACTED]

	Gas Optimization
	Claim() can be optimized for cases when merkle root is not set
	Full precision math is not strictly required

	Informational
	Dead logic and constants
	Documentation errors
	Wrong error used in initialize() function of AirdropDistribution contract

