
DRA
FT

Usual Pegasus: Phase 2Security Review

Cantina Managed review by:
Deadroses.xyz, Lead Security Researcher
Phaze, Security Researcher
Chinmay Farkya, Associate Security Researcher

November 1, 2024

DRA
FT

Contents
1 Introduction 21.1 About Cantina . 21.2 Disclaimer . 21.3 Risk assessment . 21.3.1 Severity Classification . 2
2 Security Review Summary 3
3 Findings 43.1 High Risk . 43.1.1 Claiming original allocation without staking rewards can lead to total loss of rewards 43.2 Medium Risk . 53.2.1 Claim reward function reverts after distribution period ends 53.2.2 Incorrect total staked amount calculation leads to inaccurate reward distribution . . . 73.2.3 Inconsistent withdrawal fee calculation between redeem and withdraw functions . . 83.2.4 User receives excess rewards for allocation after distribution start 103.2.5 Gamma is never scaled in USUAL token distribution formula 123.3 Low Risk . 133.3.1 Challenger role can propose off-chain distributions . 133.3.2 Incorrect mint cap check prevents valid claims in off-chain distribution 133.3.3 Reducing allocation after partial claim can brick user accounts 153.3.4 Offchain distribution can be challenged even after the challenge period is over 173.3.5 Some reward amounts will be stuck in USUALSP contract 173.3.6 Precision loss in reward distribution leads to dust amounts being stuck 173.3.7 Rounding in withdrawal fee calculations can be abused to avoid fees 193.3.8 Fee subtraction before yield update can cause arithmetic underflow 203.3.9 Unnecessary precision loss when calculating the distribution rate 213.3.10 Users unable to claim rewards after full withdrawal . 223.4 Gas Optimization . 233.4.1 Challenged off-chain distributions can be removed immediately 233.4.2 Updating the global rewards state using _updateReward() can be optimized 233.5 Informational . 233.5.1 Yield bearing vault initializer fails to initialize parent contracts 233.5.2 YieldBearingVault is vulnerable to share inflation attack 243.5.3 Excessive reward period duration can block future distributions 253.5.4 Order of approval for distributions with same timestamp is not clearly defined 263.5.5 Updates to buckets' share of the distribution are applied retroactively 263.5.6 Documentation errors . 273.5.7 Unclear naming of claimable function and missing reward query functionality 27

1

DRA
FT

1 Introduction
1.1 About Cantina
Cantina is a security servicesmarketplace that connects top security researchers and solutionswith clients.Learn more at cantina.xyz
1.2 Disclaimer
CantinaManagedprovides a detailed evaluation of the security posture of the code at a particularmomentbased on the information available at the time of the review. While CantinaManaged endeavors to identifyand disclose all potential security issues, it cannot guarantee that every vulnerability will be detected orthat the code will be entirely secure against all possible attacks. The assessment is conducted based onthe specific commit and version of the code provided. Any subsequent modifications to the code mayintroduce new vulnerabilities that were absent during the initial review. Therefore, any changes madeto the code require a new security review to ensure that the code remains secure. Please be advisedthat the Cantina Managed security review is not a replacement for continuous security measures such aspenetration testing, vulnerability scanning, and regular code reviews.
1.3 Risk assessment
Severity Description
Critical Must fix as soon as possible (if already deployed).

High Leads to a loss of a significant portion (>10%) of assets in the protocol, or sig-nificant harm to a majority of users.

Medium Global losses <10% or losses to only a subset of users, but still unacceptable.

Low Losses will be annoying but bearable. Applies to things like griefing attacks thatcan be easily repaired or even gas inefficiencies.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.
1.3.1 Severity Classification
The severity of security issues found during the security review is categorized based on the above table.Critical findings have a high likelihood of being exploited and must be addressed immediately. High find-ings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be fixedas soon as possible.
Medium findings are conditionally possible or incentivized but are still relatively likely to occur and shouldbe addressed. Low findings a rare combination of circumstances to exploit, or offer little to no incentiveto exploit but are recommended to be addressed.
Lastly, some findings might represent objective improvements that should be addressed but do not im-pact the project’s overall security (Gas and Informational findings).

2

https://cantina.xyz

DRA
FT

2 Security Review Summary
Usual is a Stablecoin DeFi protocol that redistributes control and redefines value sharing. It empowersusers by aligning their interests with the platform's success.
USD0 is a USUAL native stablecoin with real-time transparency of reserves, fully collateralized by US Trea-sury Bills. This eliminates fractional reserve risks and protects against the bankruptcy risks of fiat-backedstablecoins.
$USD0 can be locked into $USD0++, a liquid 4-year bond backed 1:1, offering users the alpha-yield dis-tributed as points and ensuring at least the native yield of their collateral. This provides enhanced stabilityand attractive returns for holders.
From Oct 8th to Oct 22nd the Cantina team conducted a review of pegasus on commit hash fdaf9a63.The team identified a total of 25 issues in the following risk categories:

• Critical Risk: 0
• High Risk: 1
• Medium Risk: 5
• Low Risk: 10
• Gas Optimizations: 2
• Informational: 7

3

https://github.com/usual-dao/pegasus
https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060

DRA
FT

3 Findings
3.1 High Risk
3.1.1 Claiming original allocation without staking rewards can lead to total loss of rewards
Severity: High Risk
Context: UsualSP.sol#L235-L251
Description: The Usual staking contract (UsualSP) has a vulnerability where users who claim their origi-nal vested allocation without first claiming their staking rewards can lose all accumulated rewards. Thisoccurs because the vested allocations are considered staked and earn rewards, but claiming the originalallocation removes the staking balance without updating the reward state.
In the UsualSP contract, vested allocations are treated as staked balances and earn staking rewards. How-ever, the claimOriginalAllocation() function does not update the user's reward state before transfer-ring the vested tokens. This can lead to a scenario where:
1. A user accumulates staking rewards on their vested allocation.
2. The user claims their original allocation using claimOriginalAllocation().
3. The user's staked balance becomes zero.
4. When trying to claim rewards with claimReward(), the transaction reverts due to insufficient balance.

As a result, the user loses all accumulated staking rewards.
Impact: The impact of this vulnerability is high. Users can potentially lose all of their accumulated stakingrewards, which could be a significant amount depending on the vesting period and reward rate.
Likelihood: The likelihood of this issue occurring is medium to high. Users are likely to claim their originalallocations as soon as they vest, and may not be aware that they need to claim rewards first. The non-intuitive order of operations increases the chances of users accidentally losing their rewards.
Proof of Concept:
function testClaimReward_poc() public {

uint256 rewardAmount = 100e18;

uint256 vestedAmount = 300e18;

setupStartOneDayRewardDistribution(rewardAmount);

setupVestingWithOneYearCliff(vestedAmount);

// Vested amount is seen as staked usualS balance

assertEq(usualSP.balanceOf(alice), vestedAmount);

// Skip to end

skip(5 * 365 days);

uint256 rate = rewardAmount / 1 days;

uint256 rewardPerToken = rate * 1 days * 1e24 / usualSP.totalSupply();

uint256 claimableRewardAmount = vestedAmount * rewardPerToken / 1e24;

vm.startPrank(alice);

// Scenario 1:

// Alice first claims her $Usual rewards

// Alice then claims her $UsualS allocation

uint256 snap = vm.snapshot();

usualSP.claimReward();

usualSP.claimOriginalAllocation();

assertEq(usualS.balanceOf(alice), vestedAmount);

assertEq(usualToken.balanceOf(alice), claimableRewardAmount);

// Scenario 2:

// Alice first claims her $UsualS allocation

// Alice then claims her $Usual rewards

vm.revertTo(snap);

usualSP.claimOriginalAllocation();

vm.expectRevert(InsufficientUsualSAllocation.selector);

usualSP.claimReward();

// Alice loses all of her claimable rewards

assertEq(usualS.balanceOf(alice), vestedAmount);

assertEq(usualToken.balanceOf(alice), 0);

}

4

https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/token/UsualSP.sol#L235-L251

DRA
FT

Recommendation: To address this vulnerability, update the claimOriginalAllocation() function to in-clude reward state updates before transferring the vested tokens. Additionally, remove the balance checkfrom the claimReward() function to allow users to claim rewards even after their balance becomes zero.
function claimReward() external nonReentrant whenNotPaused returns (uint256) {

- if (balanceOf(msg.sender) == 0) {

- revert InsufficientUsualSAllocation();

- }

UsualSPStorageV0 storage $ = _usualSPStorageV0();

if (block.timestamp < $.startDate + ONE_MONTH) {

revert NotClaimableYet();

}

return _claimRewards();

}

function claimOriginalAllocation() external nonReentrant whenNotPaused {

UsualSPStorageV0 storage $ = _usualSPStorageV0();

if ($.originalAllocation[msg.sender] == 0) {

revert NotAuthorized();

}

+ // Update staking rewards

+ _updateReward(msg.sender);

uint256 amount = _available($, msg.sender);

// slither-disable-next-line incorrect-equality

if (amount == 0) {

revert AlreadyClaimed();

}

$.originalClaimed[msg.sender] += amount;

$.usualS.safeTransfer(msg.sender, amount);

emit ClaimedOriginalAllocation(msg.sender, amount);

}

Usual: Fixed in commit b84ef3f2.
Cantina Managed: removeOriginalAllocation is also affected here.
Usual: Fixed also in c2af66ad.
3.2 Medium Risk
3.2.1 Claim reward function reverts after distribution period ends
Severity: Medium Risk
Context: RewardAccrualBase.sol#L106-L121
Description: A vulnerability in the reward distribution mechanism allows the first user to claim theirreward after the distribution period ends, but subsequent claims by other users result in a function revertdue to an underflow error. This issue effectively locks out other users from claiming their rewards oncethe distribution period has concluded.
The vulnerability occurs in the _rewardPerToken() function, which is used to calculate the reward pertoken. The function attempts to calculate the time elapsed since the last update, but when the currenttime exceeds the period finish time and a claim has already been made, it results in an underflow.
The issue manifests as follows:
1. The distribution period ends.
2. The first user successfully claims their reward.
3. This updates the lastUpdateTime to a value greater than periodFinish.
4. When subsequent users try to claim, the calculation Math.min(block.timestamp, $.periodFinish)

- $.lastUpdateTime results in an underflow, causing the function to revert.
This behavior effectively prevents all but one user from claiming their rewards after the distribution periodhas ended.
Impact: The impact of this vulnerability is high. It can result in users being unable to claim their rightfullyearned rewards, potentially leading to significant financial losses for affected users. Although users canreclaim their rewards in subsequent reward periods.

5

https://github.com/usual-dao/pegasus/commit/b84ef3f279602eab6cd92d4017666b51fc0e6589
https://github.com/usual-dao/pegasus/commit/c2af66ad1478acd0dd0d4c00ee1e875f4c88fbf1
https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/modules/RewardAccrualBase.sol#L106-L121

DRA
FT

Likelihood: The likelihood of this issue occurring is high. It will consistently happen in any scenario wheremultiple users attempt to claim rewards after the distribution period has ended. If rewards are continu-ously emitted without any gaps, this issue is might not be encountered.
Proof of Concept:
function testClaimRewardRevert_poc() public {

uint256 rewardAmount = 100e18;

uint256 vestedAmount = 300e18;

setupStartOneDayRewardDistribution(rewardAmount);

setupVestingWithOneYearCliff(vestedAmount);

// Skip to after distribution period

skip(5 * 365 days);

uint256 snap = vm.snapshot();

// Alice can still claim her reward

vm.prank(alice);

usualSP.claimReward();

// Any following claims will fail

vm.prank(bob);

// vm.expectRevert();

usualSP.claimReward();

// Try again changing roles

vm.revertTo(snap);

// Bob can claim his reward

vm.prank(bob);

usualSP.claimReward();

// Alice's claim will fail

vm.prank(alice);

// vm.expectRevert();

usualSP.claimReward();

}

Recommendation: To fix this issue, modify the _rewardPerToken() function to handle cases where las-

tUpdateTime is greater than or equal to ‘periodFinish:
function _rewardPerToken() internal view virtual returns (uint256 rewardPerToken) {

RewardAccrualBaseStorageV0 storage $ = _getRewardAccrualBaseDataStorage();

uint256 timeElapsed;

if (totalSupply() == 0) {

return $.rewardPerTokenStored;

} else {

if ($.periodFinish == 0) {

timeElapsed = block.timestamp - $.lastUpdateTime;

} else {

- timeElapsed = Math.min(block.timestamp, $.periodFinish) - $.lastUpdateTime;

+ uint256 end = Math.min(block.timestamp, $.periodFinish);

+ if ($.lastUpdateTime < end) {

+ timeElapsed = end - $.lastUpdateTime;

+ }

}

uint256 rewardIncrease = $.rewardRate * timeElapsed;

rewardPerToken = $.rewardPerTokenStored

+ rewardIncrease.mulDiv(1e24, totalSupply(), Math.Rounding.Floor); // 1e6 for precision loss

}

}

This change ensures that timeElapsed is only calculated when lastUpdateTime is less than the end of theperiod, preventing the underflow and allowing all users to claim their rewards even after the distributionperiod has ended.
Usual: Fixed in commit 0c4524a5.
Cantina Managed: Fixed. Note: could cache $.lastUpdateTime.

6

https://github.com/usual-dao/pegasus/commit/0c4524a51fd8b3e01d80efecf7de2389cdf6fe3e

D
R
A
F
T

3.2.2 Incorrect total staked amount calculation leads to inaccurate reward distribution
Severity: Medium Risk
Context: UsualSP.sol#L440-L445
Description: TheUsualSP contract incorrectly uses the totalminted supply of UsualS tokens instead of theactual staked amount in its reward calculations. This leads to inaccurate reward distributions, particularlywhen users claim their original allocations or unstake their liquid allocations.
In the RewardAccrualBase contract, the _rewardPerToken() calculation uses totalSupply() to determinethe amount of tokens staked. However, totalSupply() returns the entire minted supply of UsualS tokensin circulation, not just the amount staked in the contract. This discrepancy causes the contract to assumethat all minted UsualS tokens are always staked, which is not the case when users claim their originalallocation or unstake their liquid allocation.
As a result, the reward distribution becomes inaccurate, potentially leading to users receiving fewer re-wards than they should, as rewards are diluted across a larger perceived supply than what is actuallystaked.
Impact: The impact of this vulnerability is medium to high. Users are not at risk of losing their stakedfunds, however they receive fewer rewards than they should based on their actual staked amounts. Thisundermines the entire reward mechanism of the platform and can lead to indirect financial losses forusers who stake their tokens.
Likelihood: The likelihood of this issue occurring is high. It affects all reward calculations and becomesmore pronounced as the difference between the total minted supply and the actually staked amountincreases over time due to users unstaking or claiming original allocations.
Proof of Concept: The proof of concept demonstrates that even when Alice is the sole staker, she onlyreceives half of the rewards due to the incorrect total supply calculation.
function testClaimRewardLossTotalSupply_poc() public {

uint256 rewardAmount = 100e18;

uint256 stakedAmount = usualS.totalSupply() / 2;

skip(ONE_MONTH);

// Return entire vested/staked supply

vm.startPrank(address(usualSP));

usualS.transfer(alice, stakedAmount);

usualS.transfer(bob, stakedAmount);

vm.stopPrank();

// Start reward distribution

vm.startPrank(address(distributionModule));

deal(address(usualToken), address(distributionModule), rewardAmount);

usualToken.approve(address(usualSP), rewardAmount);

usualSP.startRewardDistribution(rewardAmount, block.timestamp, block.timestamp + 1 days);

vm.stopPrank();

uint256 snap = vm.snapshot();

// Alice stakes

vm.startPrank(alice);

usualS.approve(address(usualSP), stakedAmount);

usualSP.stake(stakedAmount);

vm.stopPrank();

// Bob stakes

vm.startPrank(bob);

usualS.approve(address(usualSP), stakedAmount);

usualSP.stake(stakedAmount);

vm.stopPrank();

skip(1 days);

// Alice unstakes and receives 1/2 reward

vm.startPrank(alice);

usualSP.unstake(stakedAmount);

usualSP.claimReward();

vm.stopPrank();

assertApproxEqRel(usualToken.balanceOf(alice), rewardAmount / 2, 0.0001e18);

// Bob unstakes and receives 1/2 reward

vm.startPrank(bob);

usualSP.unstake(stakedAmount);

usualSP.claimReward();

vm.stopPrank();

assertApproxEqRel(usualToken.balanceOf(bob), rewardAmount / 2, 0.0001e18);

// Re-simulate, but this time Alice is the sole staker

7

https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/token/UsualSP.sol#L440-L445

DRA
FT

vm.revertTo(snap);

// Alice stakes

vm.startPrank(alice);

usualS.approve(address(usualSP), stakedAmount);

usualSP.stake(stakedAmount);

vm.stopPrank();

// The entire staked amount is owned by Alice

assertEq(usualS.balanceOf(address(usualSP)), stakedAmount);

skip(1 days);

// Alice unstakes, yet still receives only 1/2 reward

vm.startPrank(alice);

usualSP.unstake(stakedAmount);

usualSP.claimReward();

vm.stopPrank();

assertApproxEqRel(usualToken.balanceOf(alice), rewardAmount / 2, 0.0001e18);

}

Recommendation: To address this issue, modify the RewardAccrualBase contract to use the actual stakedamount instead of the total minted supply. In order to improve clarity, a totalStaked() function can beadded the UsualSP contract and all instances of totalSupply() in the reward calculations should then bereplaced with totalStaked().
Example implementation:
function totalStaked() public view returns (uint256) {

return rewardToken.balanceOf(address(this));

}

Alternatively, consider implementing internal accounting to track the total staked amount, which wouldbe more robust against potential inflation attacks.
Usual: Fixed in commit 636deacd.
Cantina Managed: Fix is only partial. Any non-allocated funds within the contract would still reservesome part of the rewards distributed, basically locking them.
3.2.3 Inconsistent withdrawal fee calculation between redeem and withdraw functions
Severity: Medium Risk
Context: UsualX.sol#L536-L545
Description: The UsualX contract implements withdrawal fees inconsistently between the redeem() and
withdraw() functions. This discrepancy allows users to extract more assets than intended when using the
withdraw() function repeatedly, effectively reducing the withdrawal fee.
The previewRedeem() and previewWithdraw() functions, which are used by redeem() and withdraw() re-spectively, calculate the withdrawal fee using different approaches:
1. previewRedeem() calculates assets as:

assets = convertToAssets(shares) * (1 - feeRate)

2. previewWithdraw() calculates shares as:
shares = convertToShares(assets * (1 + feeRate))

However, the correct approach should be:
shares = convertToShares(assets / (1 - feeRate))

This inconsistency leads to:
• redeem() correctly deducting 5% fee (for a 5% fee rate).
• withdraw() allowing users to initially withdraw 95% of assets, but leaving a small amount of sharesthat can be further withdrawn.

By repeatedly calling withdraw(), users can extract more assets than intended, resulting in an effectivefee of approximately 4.762% instead of the intended 5%. The corrected formula's derivation can be seenas follows:
8

https://github.com/usual-dao/pegasus/commit/636deacd37390b5a242848628e59692ec0782e8b
https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/vaults/UsualX.sol#L536-L545

D
R
A
F
T

assets = convertToAssets(shares) · 0.95
=⇒ assets

0.95
= convertToAssets(shares)

=⇒ convertToShares
(assets

0.95

)
= shares

=⇒ convertToShares
(
assets+ assets · 0.05

0.95

)
= shares

=⇒ convertToShares
assets+ assets · 0.05

1− 0.05︸ ︷︷ ︸
fee

 = shares

Impact: The impact is moderate. Users can exploit this discrepancy to pay less in withdrawal fees thanintended, potentially leading to a loss of revenue for the protocol or other stakeholders who were meantto benefit from these fees.
Likelihood: The likelihood of this issue occurring is high. While deliberate exploitation by sophisticatedusers or automated systems is possible, especially for large withdrawals, this discrepancy will also affectregular users unknowingly. Any user who chooses to withdraw using the withdraw() function instead of
redeem() will inadvertently benefit from the lower effective fee rate, regardless of their awareness of theunderlying issue.
Proof of Concept:
function test_poc_withdraw_redeem_fee_equivalence() public {

uint256 fee = 5_00; // 5%

vm.prank(admin);

registryAccess.grantRole(WITHDRAW_FEE_UPDATER_ROLE, address(this));

usualX.updateWithdrawFee(fee);

uint256 depositAmount = 100e18;

vm.startPrank(alice);

ERC20Mock(usual).mint(alice, depositAmount);

ERC20Mock(usual).approve(address(usualX), depositAmount);

usualX.deposit(depositAmount, alice);

uint256 snap = vm.snapshot();

// Scenario 1: Alice redeems all her shares using `redeem()`

uint256 redeemShares = usualX.maxRedeem(alice);

uint256 redeemAssets = usualX.redeem(redeemShares, alice, alice);

assertEq(usualX.balanceOf(alice), 0);

assertEq(ERC20(usual).balanceOf(alice), 95e18); // 5% fee

// Scenario 2: Alice redeems all her shares using `withdraw()`

vm.revertTo(snap);

uint256 withdrawAssets = usualX.maxWithdraw(alice);

uint256 withdrawShares = usualX.withdraw(withdrawAssets, alice, alice);

assertEq(ERC20(usual).balanceOf(alice), 95e18); // 5% fee

assertGt(usualX.balanceOf(alice), 0);

// Alice can further withdraw assets beyond her limit

for (uint256 i; i < 100; i++) {

withdrawAssets = usualX.maxWithdraw(alice);

withdrawShares = usualX.withdraw(withdrawAssets, alice, alice);

}

assertApproxEqRel(ERC20(usual).balanceOf(alice), 95.238e18, 0.0001e18); // ~4.762% effective fee

}

Recommendation: Update the previewWithdraw() function to correctly calculate the number of sharesrequired for a given asset amount:

9

D
R
A
F
T

function previewWithdraw(uint256 assets) public view override returns (uint256 shares) {

UsualXStorageV0 storage $ = _usualXStorageV0();

- // Calculate the total assets needed, including the fee

- uint256 fee = Math.mulDiv(assets, $.withdrawFeeBps, BASIS_POINT_BASE, Math.Rounding.Floor);

+ // Calculate the fee based on the equivalent assets of these shares

+ uint256 fee = Math.mulDiv(assets, $.withdrawFeeBps, BASIS_POINT_BASE - $.withdrawFeeBps,

Math.Rounding.Ceil);↪→

// Calculate total assets needed, including fee

uint256 assetsWithFee = assets + fee;

// Calculate total shares needed, including fee

shares = convertToShares(assetsWithFee);

}

This change ensures that the withdrawal fee is calculated consistently across both redeem() and with-

draw() functions, preventing users from exploiting the discrepancy to pay lower fees.
Usual: Fixed in commit 4f62ce6d.
3.2.4 User receives excess rewards for allocation after distribution start
Severity: Medium Risk
Context: RewardAccrualBase.sol#L128-L133, UsualSP.sol#L325-L356
Description: The UsualSP contract incorrectly calculates rewards for users who receive allocations afterthe reward distribution has started. This results in users receiving rewards as if they had been stakingsince the beginning of the distribution period, even if they were allocated tokens much later.
The issue stems from the _earned() function in the RewardAccrualBase contract. When calculating re-wards, it uses the difference between the current rewardPerTokenStored and the user's lastRewardPer-
TokenUsed. For a newly allocated user, lastRewardPerTokenUsed is zero, causing the calculation to assumethe user has been staking since the start of the distribution.
The allocate() function in UsualSP does not update the user's reward state when allocating new tokens.This means that when a user claims rewards after receiving a late allocation, they receive rewards for theentire period since the start of distribution, rather than just for the time since their allocation.
This issue also arises in the case that the allocation increases for users which have previously staked.
Impact: The impact is high as it results in an unfair distribution of rewards. Users receiving late allocationsare overpaid at the expense of users who have been staking since the beginning of the distribution period.
Likelihood: The likelihood is low to medium and depends on the intended functionality and frequency oflate allocations. This issue only arises when users receive their first allocation after the distribution hasstarted and have not previously staked.
Proof of Concept:

10

https://github.com/usual-dao/pegasus/commit/4f62ce6dad9561d443ab1789233b2d116c98d1c9
https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/modules/RewardAccrualBase.sol#L128-L133
https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/token/UsualSP.sol#L325-L356

D
R
A
F
T

function test_poc_allocation_after_start() public {

uint256 rewardAmount = 100e18;

uint256 vestedAmount = usualS.totalSupply() / 2;

// Simulate 100 days of rewards passing

for (uint256 i; i < 100; i++) {

setupStartOneDayRewardDistribution(rewardAmount);

skip(1 days);

}

// Set up a vested allocation for Alice

setupVestingWithOneYearCliff(vestedAmount);

// Alice claims her staking reward

vm.prank(alice);

usualSP.claimReward();

// Even though Alice hasn't spent any time

// actively staking or kept any of her original

// allocation unclaimed in the staking contract

// she has received staking rewards as if she had

// kept her original allocation staked

assertApproxEqAbs(usualToken.balanceOf(alice), 5000e18, 0.001e18);

}

Recommendation: There are two potential approaches to address this issue:
1. Update the allocate() function to call _updateReward() for each recipient before setting their allo-cation:

function allocate(

address[] calldata recipients,

uint256[] calldata originalAllocations,

uint256[] calldata cliffDurations

) external {

UsualSPStorageV0 storage $ = _usualSPStorageV0();

$.registryAccess.onlyMatchingRole(USUALSP_OPERATOR_ROLE);

if (

recipients.length != originalAllocations.length

|| recipients.length != cliffDurations.length || recipients.length == 0

) {

revert InvalidInputArraysLength();

}

for (uint256 i; i < recipients.length;) {

if (cliffDurations[i] > $.duration) {

revert CliffBiggerThanDuration();

}

if (recipients[i] == address(0)) {

revert InvalidInput();

}

+ _updateReward(recipients[i]);

$.originalAllocation[recipients[i]] = originalAllocations[i];

$.cliffDuration[recipients[i]] = cliffDurations[i];

unchecked {

++i;

}

}

emit NewAllocation(recipients, originalAllocations, cliffDurations);

}

2. Alternatively, prohibit updating allocations after the distribution period has started:

11

DRA
FT

function allocate(

address[] calldata recipients,

uint256[] calldata originalAllocations,

uint256[] calldata cliffDurations

) external {

UsualSPStorageV0 storage $ = _usualSPStorageV0();

$.registryAccess.onlyMatchingRole(USUALSP_OPERATOR_ROLE);

+ if($.startDate <= block.timestamp) revert AfterDistributionStart();

// ... rest of the function

}

Additionally, consider modifying the _earned() function to handle the case where lastRewardPerTo-
kenUsed is zero:

function _earned(address account) internal view virtual returns (uint256 earned) {

RewardAccrualBaseStorageV0 storage $ = _getRewardAccrualBaseDataStorage();

uint256 accountBalance = balanceOf(account);

- uint256 rewardDelta = $.rewardPerTokenStored - $.lastRewardPerTokenUsed[account];

+ uint256 lastRewardPerTokenUsed = $.lastRewardPerTokenUsed[account];

+ uint256 rewardDelta = lastRewardPerTokenUsed == 0 ? 0 : $.rewardPerTokenStored -

lastRewardPerTokenUsed;↪→

earned = accountBalance.mulDiv(rewardDelta, 1e24, Math.Rounding.Floor) + $.rewards[account]; //

1e24 for precision loss↪→

}

These changes ensure that users only receive rewards for the period after their allocation.
Usual: Fixed in commit 926bae08.
3.2.5 Gamma is never scaled in USUAL token distribution formula
Severity: Medium Risk
Context: DistributionModule.sol#L637-L655, DistributionModule.sol#L881-L890
Description: When distributeUsualToBuckets() is called, the formula for the total amount of tokens tobe distributed takes into accountmany factors and controls which can be used to adjust the tokenmintingrate.
One such factor is gamma : which is meant to upscale the amount distributed if more than 24 hours havepassed since the last distribution. But the current implementation does not calculate Gamma correctly.
The value of gamma depends on the timePassed since lastOnChainDistributionTimestamp. But the cal-culation here will never really take into account the real time duration since the last distribution.
function distributeUsualToBuckets(uint256 ratet, uint256 p90Rate)

external

whenNotPaused

nonReentrant

{

DistributionModuleStorageV0 storage $ = _distributionModuleStorageV0();

_requireOnlyOperator($);

if (block.timestamp < $.lastOnChainDistributionTimestamp + DISTRIBUTION_FREQUENCY_SCALAR) {

revert CannotDistributeUsualMoreThanOnceADay();

}

$.lastOnChainDistributionTimestamp = block.timestamp;

(,,,, uint256 usualDistribution) = _calculateUsualDistribution($, ratet, p90Rate);

_distributeToOffChainBucket($, usualDistribution);

_distributeToUsualXBucket($, usualDistribution);

_distributeToUsualStarBucket($, usualDistribution);

}

The lastOnChainDistributionTimestamp is first updated to block.timestamp here and then _calcula-

teUsualDistribution() is called where many values like gamma, kappa, mt etc. are calculated.
In _calculateGamma (gamma value is used in calculating kappa and mt), distribution is scaled based onthe timePassed but timePassed = block.timestamp - lastOnChainDistributionTimestamp which will al-

12

https://github.com/usual-dao/pegasus/commit/926bae0863ea408cb6874fd29b4e3565d9c179b4
https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/distribution/DistributionModule.sol#L637-L655
https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/distribution/DistributionModule.sol#L881-L890

D
R
A
F
T

ways be zero (as the timestamp has been updated to the current time already) so the calculations do notaccount for any time latencies.
As a result gamma will always be == baseGamma and the calculated MT and Kappa values will be wrongwhich may lead to underdistribution of USUAL token rewards.
Recommendation: The should first call _calculateUsualDistribution, and then later set
$.lastOnChainDistributionTimestamp = block.timestamp; to correctly use the previous distributiontimestamp.
Usual: Fixed in commit e0d6557b.
Cantina Managed: Fixed.
3.3 Low Risk
3.3.1 Challenger role can propose off-chain distributions
Severity: Low Risk
Context: DistributionModule.sol#L685-L702
Description: In the Distribution Module, the challengeAndProposeOffChainDistribution() function al-lows the Challenger role to both challenge existing off-chain distributions and propose new ones. How-ever, proposing new distributions should typically be restricted to the Operator role, as implemented inthe queueOffChainUsualDistribution() function.
This discrepancy in role permissions could lead to unintended behavior where Challengers can influencethe distribution process beyond their intended scope.
Recommendation: Remove the challengeAndProposeOffChainDistribution() function. Keep the twoseparate functions for their designated roles: one for challenging (restricted to Challenger role) and onefor proposing (restricted to Operator role).
This ensures that the Challenger role can only challenge distributions, maintaining the intended separa-tion of responsibilities.
Usual: Fixed in commit 9734048a.
3.3.2 Incorrect mint cap check prevents valid claims in off-chain distribution
Severity: Low Risk
Context: DistributionModule.sol#L379-L417
Description: In the claimOffChainDistribution() function of the Distribution Module, there is a dis-crepancy between how the mint cap is checked and how the actual claimable amount is calculated. Thefunction checks if the total claimable amount for an account exceeds the mint cap, but it only mints thedifference between the total claimable amount and what has already been claimed. This can lead tosituations where valid claims are rejected, leaving unclaimed tokens in the contract.
Specifically, the function checks:
if (amount > $.offChainDistributionMintCap) {

revert NoTokensToClaim();

}

But it actually mints:
uint256 amountToSend = amount - claimedUpToNow;

$.offChainDistributionMintCap -= amountToSend;

This discrepancy can prevent users from claiming their full allocation across multiple distributions, evenwhen the remaining mint cap is sufficient to cover their outstanding claim.
Proof of Concept:

13

https://github.com/usual-dao/pegasus/commit/e0d6557b97a776bbab02c2ed7485eb0a0e530779
https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/distribution/DistributionModule.sol#L685-L702
https://github.com/usual-dao/pegasus/commit/9734048adc8adccc36afc9a6243de62953e16fa6
https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/distribution/DistributionModule.sol#L379-L417

DRA
FT

function test_poc_claimOffChainDistribution_mintCap() external {

vm.prank(distributionAllocator);

distributionModule.setBucketsDistribution(BASIS_POINT_BASE, 0, 0, 0, 0, 0, 0, 0, 0);

skip(DISTRIBUTION_FREQUENCY_SCALAR);

// Distribute Usual

vm.startPrank(distributionOperator);

distributionModule.distributeUsualToBuckets(30, 30);

// The mint cap has increased to over 20 tokens

uint256 mintCap = distributionModule.getOffChainDistributionMintCap();

assertGt(mintCap, 20e18);

// Queue and approve first distribution

distributionModule.queueOffChainUsualDistribution(FIRST_MERKLE_ROOT);

skip(USUAL_DISTRIBUTION_CHALLENGE_PERIOD + 1);

distributionModule.approveUnchallengedOffChainDistribution();

vm.stopPrank();

// Alice claims 10 tokens from first distribution

distributionModule.claimOffChainDistribution(

alice, aliceAmountInFirstMerkleTree, _aliceProofForFirstMerkleTree()

);

// Queue and approve second distribution

vm.startPrank(distributionOperator);

distributionModule.queueOffChainUsualDistribution(SECOND_MERKLE_ROOT);

skip(USUAL_DISTRIBUTION_CHALLENGE_PERIOD + 1);

distributionModule.approveUnchallengedOffChainDistribution();

vm.stopPrank();

// Alice is unable to claim from the second distribution

vm.expectRevert(NoTokensToClaim.selector);

distributionModule.claimOffChainDistribution(

alice, aliceAmountInSecondMerkleTree, _aliceProofForSecondMerkleTree()

);

// Alice's outstanding claim is less than the remaining mint cap

uint256 tokensClaimed = distributionModule.getOffChainTokensClaimed(alice);

uint256 outstandingClaim = aliceAmountInSecondMerkleTree - tokensClaimed;

assertLt(outstandingClaim, mintCap);

}

Recommendation: Update themint cap check in the claimOffChainDistribution() function to comparethe actual amount to be minted against the remaining mint cap:
function claimOffChainDistribution(address account, uint256 amount, bytes32[] calldata proof)

external

whenNotPaused

nonReentrant

{

// ... (existing checks)

uint256 claimedUpToNow = $.claimedByOffChainClaimer[account];

if (claimedUpToNow >= amount) {

revert NoTokensToClaim();

}

uint256 amountToSend = amount - claimedUpToNow;

- if (amount > $.offChainDistributionMintCap) {

+ if (amountToSend > $.offChainDistributionMintCap) {

revert NoTokensToClaim();

}

$.offChainDistributionMintCap -= amountToSend;

$.claimedByOffChainClaimer[account] = amount;

emit OffChainDistributionClaimed(account, amountToSend);

$.usual.mint(account, amountToSend);

}

This change ensures that users can claim their full allocation across multiple distributions as long as theremaining mint cap is sufficient to cover their outstanding claim.
Usual: Fixed in commit 1795ce1d.

14

https://github.com/usual-dao/pegasus/commit/1795ce1d7ff1111d8d93dbec243686c95f272559

D
R
A
F
T

3.3.3 Reducing allocation after partial claim can brick user accounts
Severity: Low Risk
Context: UsualSP.sol#L325-L356
Description: In the UsualSP contract, the allocate() function allows the UsualSP operator to updateexisting allocations for recipients. However, reducing an allocation after a user has partially claimed theirtokens can lead to accounting issues, potentially bricking the user's account.
When an allocation is reduced after a partial claim, it can result in a situation where the claimed amountexceeds the new allocation. This causes several core functions of the contract like balanceOf(), stake(),and claimReward() to revert due to arithmetic errors, effectively rendering the user's account unusable.
Proof of Concept:
function test_poc_reduce_allocation_after_claim() public {

address[] memory recipients = new address[](1);

recipients[0] = alice;

uint256[] memory allocations = new uint256[](1);

allocations[0] = 100e18;

uint256[] memory cliffDurations = new uint256[](1);

cliffDurations[0] = 100 days;

setupVesting(recipients, allocations, cliffDurations);

skip(100 days);

// Alice partially claims her allocation

vm.prank(alice);

usualSP.claimOriginalAllocation();

assertGt(usualS.balanceOf(alice), 0);

skip(10 days);

// Alice's allocation is reduced

allocations[0] = 0;

setupVesting(recipients, allocations, cliffDurations);

vm.startPrank(alice);

// Alice is unable to make many calls to UsualSP

vm.expectRevert();

usualSP.claimOriginalAllocation();

vm.expectRevert(stdError.arithmeticError);

usualSP.balanceOf(alice);

vm.expectRevert(stdError.arithmeticError);

usualSP.stake(123);

vm.expectRevert(stdError.arithmeticError);

usualSP.claimReward();

}

Recommendation: To address this issue, consider implementing one or more of the following solutions:
1. Prevent reducing allocations:

15

https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/token/UsualSP.sol#L325-L356

DRA
FT

function allocate(

address[] calldata recipients,

uint256[] calldata originalAllocations,

uint256[] calldata cliffDurations

) external {

UsualSPStorageV0 storage $ = _usualSPStorageV0();

$.registryAccess.onlyMatchingRole(USUALSP_OPERATOR_ROLE);

if (

recipients.length != originalAllocations.length

|| recipients.length != cliffDurations.length || recipients.length == 0

) {

revert InvalidInputArraysLength();

}

for (uint256 i; i < recipients.length;) {

if (cliffDurations[i] > $.duration) {

revert CliffBiggerThanDuration();

}

if (recipients[i] == address(0)) {

revert InvalidInput();

}

+ if (originalAllocations[i] < $.originalAllocation[recipients[i]]) {

+ revert CannotReduceAllocation();

+ }

$.originalAllocation[recipients[i]] = originalAllocations[i];

$.cliffDuration[recipients[i]] = cliffDurations[i];

unchecked {

++i;

}

}

emit NewAllocation(recipients, originalAllocations, cliffDurations);

}

2. Only allow allocation updates before the start date:
function allocate(

address[] calldata recipients,

uint256[] calldata originalAllocations,

uint256[] calldata cliffDurations

) external {

UsualSPStorageV0 storage $ = _usualSPStorageV0();

$.registryAccess.onlyMatchingRole(USUALSP_OPERATOR_ROLE);

+ if (block.timestamp >= $.startDate) {

+ revert AllocationUpdateNotAllowed();

+ }

// ... rest of the function

}

3. Modify balanceOf() to handle potential underflow:
function balanceOf(address account) public view override returns (uint256) {

UsualSPStorageV0 storage $ = _usualSPStorageV0();

- return

- $.liquidAllocation[account] + $.originalAllocation[account] - $.originalClaimed[account];

+ uint256 originalAllocation = $.originalAllocation[account];

+ uint256 claimed = $.originalClaimed[account];

+

+ // Cover an unexpected scenario

+ if (claimed >= originalAllocation) {

+ return 0;

+ }

+

+ return $.liquidAllocation[account] + originalAllocation - claimed;

}

This change ensures that allocations cannot be reduced below the amount already claimed, preventingthe accounting issues that could brick user accounts.

16

D
R
A
F
T

Usual: Fixed in commit b6f2962a.
3.3.4 Offchain distribution can be challenged even after the challenge period is over
Severity: Low Risk
Context: DistributionModule.sol#L705-L710
Description: There is a constraint on the approveOffChainDistribution() function ie. it only allowsapproval-and-distribution of USUAL token rewards if the challenge period for the queued merkle treeis over, but there is no such constraint on challengeOffChainDistribution().
So even those distributions whose challenge period duration is over can be challenged by the challengerrole. This allows the challenger to apply challenges as they wish, and do not provide guarantees for theapproval of that distribution.
Recommendation: Add a check to challengeOffChainDistribution() that only allows challenging amerkle tree if the challenge period for it is still running. This will clearly separate the challenge periodand approval period.
Usual: Fixed in commits 0a48727b and 47a65c37.
3.3.5 Some reward amounts will be stuck in USUALSP contract
Severity: Low Risk
Context: (No context files were provided by the reviewer)
Description: For periods within a distribution cycle, whenever USUALSP.totalSupply() is zero ie. no userstaked for that period, the USUAL rewards allocated for that period of the cycle will not be accrued toanyone. This is because rewards are only minted for a duration since last update if the total staked

supply > 0 during that time.
This will lead to loss of a part of the USUAL rewards, as these will not be accommodated into any futuredistribution cycles. Also, there is a lack of a sweep function to pull these undistributed rewards out of theUSUALSP contract.
Note: this issue manifests only when staked supply is calculated correctly (i.e. after fixing finding "Claiming
original allocation without staking rewards can lead to total loss of rewards")
Recommendation: Add a sweep function to pull out undistributed USUAL tokens from the USUALSPcontract so that they can be reused within the USUAL ecosystem instead of remaining stuck.
Usual: This is intended and we will add a sweeping mechanism in the future if need be.
3.3.6 Precision loss in reward distribution leads to dust amounts being stuck
Severity: Low Risk
Context: RewardAccrualBase.sol#L176-L214
Description: In the UsualSP contract's _startRewardDistribution() function, the calculation of
rewardRate using division before multiplication results in precision loss. This causes the total rewardsdistributed to be slightly less than the intended rewardAmount, leaving small amounts of tokenspermanently stuck in the staking contract.
The issue occurs because:
1. rewardRate is calculated as rewardAmount / (endTime - startTime).
2. The total capped payout ends up being rewardRate * (endTime - startTime).
3. Due to the division occurring first, the final amount paid out is less than the original rewardAmount.

Proof of Concept:

17

https://github.com/usual-dao/pegasus/commit/b6f2962a06684c9f92faf2b020be833ae4ab10ce
https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/distribution/DistributionModule.sol#L705-L710
https://github.com/usual-dao/pegasus/pull/1691/commits/0a48727bfd3e102302aa57175cb3bf4b30232913
https://github.com/usual-dao/pegasus/commit/47a65c37b230a239464b51c43f0206440f2d269a
https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/modules/RewardAccrualBase.sol#L176-L214

DRA
FT

function test_poc_startRewardDistribution_dust() public {

uint256 rewardAmount = 100e18;

uint256 stakedAmount = usualS.totalSupply();

// Return entire vested/staked supply

vm.startPrank(address(usualSP));

usualS.transfer(alice, stakedAmount);

vm.stopPrank();

// Start reward distribution

vm.startPrank(address(distributionModule));

deal(address(usualToken), address(distributionModule), rewardAmount);

usualToken.approve(address(usualSP), rewardAmount);

usualSP.startRewardDistribution(rewardAmount, block.timestamp, block.timestamp + 1 days);

vm.stopPrank();

// Alice stakes the entire supply for the entire duration

vm.startPrank(alice);

usualS.approve(address(usualSP), stakedAmount);

usualSP.stake(stakedAmount);

skip(10 * 365 days);

// Alice unstakes

usualSP.unstake(stakedAmount);

usualSP.claimReward();

// 99999999999999964800, 100000000000000000000

assertLt(usualToken.balanceOf(alice), rewardAmount);

}

Recommendation: Consider adjusting the reward amount calculation to account for the precision loss:
function _startRewardDistribution(uint256 rewardAmount, uint256 startTime, uint256 endTime)

internal

virtual

{

// ... existing code ...

- $.rewardRate = rewardAmount.mulDiv(1, endTime - startTime, Math.Rounding.Floor);

+ uint256 duration = endTime - startTime;

+ $.rewardRate = rewardAmount / duration;

+ // Adjust reward amount to match what will actually be paid out

+ uint256 adjustedAmount = $.rewardRate * duration;

+ $.rewardAmount = adjustedAmount;

- $.rewardToken.safeTransferFrom(msg.sender, address(this), rewardAmount);

+ $.rewardToken.safeTransferFrom(msg.sender, address(this), adjustedAmount);

- emit RewardPeriodStarted(rewardAmount, startTime, endTime);

+ emit RewardPeriodStarted(adjustedAmount, startTime, endTime);

emit RewardRateChanged($.rewardRate);

}

This way the amount transferred matches exactly what will be paid out, preventing dust amounts frombeing trapped in the contract.
Usual: Fixed in commit c8a44993.

18

https://github.com/usual-dao/pegasus/commit/c8a4499367c8f93c2e640606b3e0eddceaff2c1a

D
R
A
F
T

3.3.7 Rounding in withdrawal fee calculations can be abused to avoid fees
Severity: Low Risk
Context: UsualX.sol#L499-L508
Description: The previewWithdraw() and withdraw() functions in UsualX vault use floor rounding whencalculating withdrawal fees, allowing users to minimize or completely avoid fees by splitting withdrawalsinto many smaller transactions.
Description: The current implementation calculates withdrawal fees using Math.mulDiv() with
Math.Rounding.Floor. When withdrawing small amounts, this rounding can result in zero fees beingcharged. A user can exploit this by breaking up a large withdrawal into multiple smaller withdrawals,effectively avoiding most or all fees that would normally be charged on the total amount.
Impact: The impact is medium. While the protocol loses fee revenue, the exploitation requires manysmall transactions, making it costly in terms of gas fees. The economic viability depends on thewithdrawalamount, gas costs, and fee percentage.
Likelihood: The likelihood is low, as the attack requiresmany transactions and is only economically viablewith specific fee and gas price combinations. However, as gas prices decrease or in L2 environments withlower gas costs, this attack becomes more feasible.
Proof of Concept:
function test_poc_withdraw_avoid_fees() public {

uint256 fee = 100; // 1%

vm.prank(admin);

registryAccess.grantRole(WITHDRAW_FEE_UPDATER_ROLE, address(this));

usualX.updateWithdrawFee(fee);

uint256 depositAmount = 10_000;

vm.startPrank(alice);

ERC20Mock(usual).mint(alice, depositAmount);

ERC20Mock(usual).approve(address(usualX), depositAmount);

usualX.deposit(depositAmount, alice);

uint256 snap = vm.snapshot();

// Scenario 1:

// Alice redeems all her shares using `redeem()`

uint256 redeemShares = usualX.maxRedeem(alice);

uint256 redeemAssets = usualX.redeem(depositAmount, alice, alice);

// Effective fee on assets (1%):

assertEq(ERC20(usual).balanceOf(alice), 9900);

// Try again using many small withdrawals

vm.revertTo(snap);

// Scenario 2:

// Alice redeems all her shares in many small withdrawals

for (uint256 i; i < 101; i++) {

usualX.withdraw(fee - 1, alice, alice);

}

usualX.withdraw(1, alice, alice);

// Effective fee on assets (0%):

assertEq(ERC20(usual).balanceOf(alice), depositAmount);

}

Recommendation: Consider rounding up in all fee calculations and share conversions to protect protocolrevenue:
function previewWithdraw(uint256 assets) public view override returns (uint256 shares) {

UsualXStorageV0 storage $ = _usualXStorageV0();

// Calculate the total assets needed, including the fee

- uint256 fee = Math.mulDiv(assets, $.withdrawFeeBps, BASIS_POINT_BASE, Math.Rounding.Floor);

+ uint256 fee = Math.mulDiv(assets, $.withdrawFeeBps, BASIS_POINT_BASE, Math.Rounding.Ceil);

// Calculate total assets needed, including fee

uint256 assetsWithFee = assets + fee;

// Convert the total assets (including fee) to shares

- shares = convertToShares(assetsWithFee);

19

https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/vaults/UsualX.sol#L499-L508

D
R
A
F
T

+ shares = _convertToShares(assetsWithFee, Math.Rounding.Ceil);

}

function previewRedeem(uint256 shares) public view override returns (uint256 assets) {

UsualXStorageV0 storage $ = _usualXStorageV0();

// Calculate the raw amount of assets for the given shares

uint256 assetsWithoutFee = convertToAssets(shares);

// Calculate and subtract the withdrawal fee

- uint256 fee = Math.mulDiv(assetsWithoutFee, $.withdrawFeeBps, BASIS_POINT_BASE, Math.Rounding.Floor);

+ uint256 fee = Math.mulDiv(assetsWithoutFee, $.withdrawFeeBps, BASIS_POINT_BASE, Math.Rounding.Ceil);

assets = assetsWithoutFee - fee;

}

function withdraw(uint256 assets, address receiver, address owner)

public

override

whenNotPaused

nonReentrant

returns (uint256 shares)

{

UsualXStorageV0 storage $ = _usualXStorageV0();

YieldDataStorage storage yieldStorage = _getYieldDataStorage();

// Check withdrawal limit

uint256 maxAssets = maxWithdraw(owner);

if (assets > maxAssets) {

revert ERC4626ExceededMaxWithdraw(owner, assets, maxAssets);

}

// Calculate shares needed

shares = previewWithdraw(assets);

- uint256 fee = Math.mulDiv(assets, $.withdrawFeeBps, BASIS_POINT_BASE, Math.Rounding.Floor);

+ uint256 fee = Math.mulDiv(assets, $.withdrawFeeBps, BASIS_POINT_BASE, Math.Rounding.Ceil);

// take the fee

yieldStorage.totalDeposits -= fee;

// Perform withdrawal (exact assets to receiver)

super._withdraw(_msgSender(), receiver, owner, assets, shares);

}

Usual: Fixed in commit 0a6cad09. To add to this, this attack vector is virtually impossible to be profitableon Ethereum mainnet, which is where our protocol is deployed.
3.3.8 Fee subtraction before yield update can cause arithmetic underflow
Severity: Low Risk
Context: UsualX.sol#L425-L449
Description: The withdraw() and redeem() functions in the UsualX contract subtract the withdrawal feefrom totalDeposits before updating the yield. This can lead to an arithmetic underflow when a user'sdeposit is smaller than the yield multiplied by the fee percentage.
The issue arises from the order of operations in the withdrawal process:
1. The withdrawal fee is calculated and subtracted from totalDeposits in both withdraw() and re-

deem().
2. The _withdraw() function is called, which updates the yield and then subtracts the asset amountfrom totalDeposits.
3. If the user's deposit is small and the accumulated yield is large, subtracting the fee before updatingthe yield can cause totalDeposits to underflow.

Proof of Concept:

20

https://github.com/usual-dao/pegasus/commit/0a6cad0911eaeab373bb5097e2e143763390f9f3
https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/vaults/UsualX.sol#L425-L449

DRA
FT

function test_poc_withdraw_yield_revert() public {

uint256 fee = 500; // 5%

vm.prank(admin);

registryAccess.grantRole(WITHDRAW_FEE_UPDATER_ROLE, address(this));

usualX.updateWithdrawFee(fee);

uint256 depositAmount = 1e18;

uint256 yieldAmount = 100e18;

deal(address(usual), address(alice), depositAmount);

deal(address(usual), address(usualX), yieldAmount);

// A yield distribution is started

vm.prank(address(distributionModule));

usualX.startYieldDistribution(100e18, block.timestamp, block.timestamp + 1 days);

// Alice deposits

vm.startPrank(alice);

ERC20Mock(usual).approve(address(usualX), depositAmount);

usualX.deposit(depositAmount, alice);

skip(1 days);

// Alice is unable to withdraw

uint256 maxWithdraw = usualX.maxWithdraw(alice);

vm.expectRevert(stdError.arithmeticError);

usualX.withdraw(maxWithdraw, alice, alice);

}

Recommendation: Consider updating the yield before subtracting the fee from totalDeposits:
function withdraw(uint256 assets, address receiver, address owner)

public

override

whenNotPaused

nonReentrant

returns (uint256 shares)

{

UsualXStorageV0 storage $ = _usualXStorageV0();

YieldDataStorage storage yieldStorage = _getYieldDataStorage();

// Check withdrawal limit

uint256 maxAssets = maxWithdraw(owner);

if (assets > maxAssets) {

revert ERC4626ExceededMaxWithdraw(owner, assets, maxAssets);

}

// Calculate shares needed

shares = previewWithdraw(assets);

uint256 fee = Math.mulDiv(assets, $.withdrawFeeBps, BASIS_POINT_BASE, Math.Rounding.Floor);

- // take the fee

- yieldStorage.totalDeposits -= fee;

// Perform withdrawal (exact assets to receiver)

super._withdraw(_msgSender(), receiver, owner, assets, shares);

+ // take the fee after withdrawal

+ yieldStorage.totalDeposits -= fee;

}

Usual: Fixed in commit 0227a599.
3.3.9 Unnecessary precision loss when calculating the distribution rate
Severity: Low Risk
Context: DistributionModule.sol#L942
Description: When calculating the new distribution, the two admin inputs ratet and p90rate are onlyscaled in basis points (1e4). Such small scaling is prone to precision loss and would often result in notice-able differences, although they should not realistically be impactful.
Recommendation: Consider scaling the numbers in 1e18 instead.
Usual: Fixed in e4b89bba.
Cantina Managed: Issue only fixed partially. Values are still provided scaled in basis points, but code isrefactored so there's less precision loss.

21

https://github.com/usual-dao/pegasus/commit/0227a599b6d83abdd641c241f93422d29a633811
https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/distribution/DistributionModule.sol#L942
https://github.com/usual-dao/pegasus/commit/e4b89bba885d64b4deb66dcd8ce3ff582389448b

DRA
FT

3.3.10 Users unable to claim rewards after full withdrawal
Severity: Low Risk
Context: UsualSP.sol#L307
Description: The UsualSP contract prevents users from claiming staking rewards if they have a zerobalance, even if they have accrued rewards from previous staking periods. This creates a suboptimaluser experience where users who have fully withdrawn their stake cannot claim their earned rewardswithout re-staking tokens in the contract.
The issue stems from the balance check in the claimReward() function:
function claimReward() external nonReentrant whenNotPaused returns (uint256) {

if (balanceOf(msg.sender) == 0) {

revert InsufficientUsualSAllocation();

}

// ...

}

Proof of Concept:
function testClaimRewardRevert_poc() public {

uint256 rewardAmount = 100e18;

uint256 stakedAmount = 10e18;

// Alice stakes

vm.startPrank(alice);

deal(address(usualS), alice, stakedAmount);

usualS.approve(address(usualSP), stakedAmount);

usualSP.stake(stakedAmount);

vm.stopPrank();

// Start reward distribution

vm.startPrank(address(distributionModule));

deal(address(usualToken), address(distributionModule), rewardAmount);

usualToken.approve(address(usualSP), rewardAmount);

usualSP.startRewardDistribution(rewardAmount, block.timestamp, block.timestamp + 1 days);

vm.stopPrank();

skip(1 days);

// Alice unstakes, but is not able to claim her reward

vm.startPrank(alice);

usualSP.unstake(stakedAmount);

vm.expectRevert(InsufficientUsualSAllocation.selector);

usualSP.claimReward();

vm.stopPrank();

}

Recommendation: Consider removing the balance check from the claimReward() function to allow usersto claim their accrued rewards even after fully withdrawing their stake:
function claimReward() external nonReentrant whenNotPaused returns (uint256) {

- if (balanceOf(msg.sender) == 0) {

- revert InsufficientUsualSAllocation();

- }

UsualSPStorageV0 storage $ = _usualSPStorageV0();

if (block.timestamp < $.startDate + ONE_MONTH) {

revert NotClaimableYet();

}

return _claimRewards();

}

Usual: Fixed in commit b84ef3f2.

22

https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/token/UsualSP.sol#L307
https://github.com/usual-dao/pegasus/commit/b84ef3f279602eab6cd92d4017666b51fc0e6589

D
R
A
F
T

3.4 Gas Optimization
3.4.1 Challenged off-chain distributions can be removed immediately
Severity: Gas Optimization
Context: (No context files were provided by the reviewer)
Description: The current implementation of _markQueuedOffChainDistributionsAsChallenged()marksdistributions as challenged by setting a boolean flag, but these challenged distributions are never "un-challenged" and are simply ignored during the approval process. Since challenged distributions serveno further purpose, they could be removed immediately to save gas costs associated with storage anditeration.
Recommendation: Consider modifying the _markQueuedOffChainDistributionsAsChallenged()function to remove challenged distributions immediately instead of marking them. This change wouldsimplify the approveUnchallengedOffChainDistribution() function as it would no longer need to checkthe isChallenged flag, and would reduce gas costs by removing unnecessary storage operations anditerations over challenged distributions.
Usual: Fixed in commit be8104fd.
Canitna Managed: Fixed. Could further update the function name and natspec for _markQueuedOf-

fChainDistributionsAsChallenged.
3.4.2 Updating the global rewards state using _updateReward() can be optimized
Severity: Gas Optimization
Context: (No context files were provided by the reviewer)
Description: When the lastUpdateTime == block.timetamp, no new rewards are to be minted and sothe calculations surrounding rewardPerToken are not required to be done.
In the current implementation, _updateReward() calls _rewardPerToken() in all cases even when it hasbeen updated just now.
This is sub-optimal and should be changed to reduce calculations and gas cost.
Recommendation: Add a check in _updateReward() to only call _rewardPerToken() if block.timetamp >

lastUpdateTime, otherwise use the stored value of rewardPerTokenStored.
Usual: Fixed in commit 021b370e.
Cantina Managed: Fixed. Could cache storage vars.
3.5 Informational
3.5.1 Yield bearing vault initializer fails to initialize parent contracts
Severity: Informational
Context: YieldBearingVault.sol#L46-L48
Description: The __YieldBearingVault_init() function in the YieldBearingVault contract does not prop-erly initialize its parent contracts ERC4626 and ERC20. This function only calls __YieldBearingVault_-

init_unchained(), which initializes a single storage variable totalDeposits. The expected behavior wouldbe to call the initializers of all parent contracts in the inheritance chain.
While this deviation from expected behavior does not cause issues in the current implementation, it couldlead to unexpected behavior if the contract is extended or if assumptions about the initialization statechange in the future.
Recommendation: Modify the __YieldBearingVault_init() function to properly initialize all parent con-tracts in the inheritance chain. This includes calling the initializers for ERC4626 and ERC20.

23

https://github.com/usual-dao/pegasus/commit/be8104fd9a1d442c1a0747e61628b8a5f645c267
https://github.com/usual-dao/pegasus/commit/021b370e5d29d811a1eeb5228e852d40a4f32d4e
https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/vaults/YieldBearingVault.sol#L46-L48

DRA
FT

- function __YieldBearingVault_init() internal onlyInitializing {

+ function __YieldBearingVault_init(

+ address _underlyingToken,

+ string memory _name,

+ string memory _symbol

+) internal onlyInitializing {

+ __ERC4626_init(IERC20(_underlyingToken));

+ __ERC20_init(_name, _symbol);

__YieldBearingVault_init_unchained();

}

This change ensures that all necessary initializations are performed, including setting up the underlyingtoken for ERC4626 and initializing the name and symbol for ERC20. It maintains the proper initializationchain and reduces the risk of potential issues in future extensions or modifications of the contract.
Usual: Fixed in commit 2ff71241.
Cantina Managed: Fixed.
3.5.2 YieldBearingVault is vulnerable to share inflation attack
Severity: Informational
Context: YieldBearingVault.sol#L13
Description: YieldBearingVault accrues yield every second. If the yield mode is on when the vault isdeployed, a user could weaponize it to perform the popular share inflation attack.
Attack path:
1. Attacker does the first deposit (let's say for 1e18).
2. As soon as even 1 wei of yield is accrued, user could withdraw all but 1 share. Due to rounding down,the remaining assets in the vault will be 2 wei, or the rate will be increased to 2:1.
3. Then the user can perform a deposit for 1 wei, which would round down to 0 shares and wouldincrease the rate to 3:1.
4. Performing the step above, the user can indefinitely inflate the share value.
5. The user does so, until the share value becomes large enough, that the next innocent user's depositrounds down to 0 shares. This would effectively be the same as a donation to the attacker.

Given that the initially accrued yield will be much more than just 1 wei, the attack would require a reallylow number of loops to execute.
Note: Given that the Usual team is aware of this issue and is taking necessary precautions (such as being the
first minter and not turning on the vault shares for some time), this issue is unlikely to occur.
Recommendation: Do not activate the yield mode before a reasonable amount of users are already inthe vault.
Usual: This attack is not possible in reality for several reasons:
1) We will be the first depositor into the vault to provide dead shares for the vault, there is no scenarioin which users can do this prior to us.
2) No one has Usual to stake into UsualX vault at the outset: Usual is not immediately distributed tousers at TGE as rewards are set to begin in the following week.
3) There is no scenario where "the yield mode is on when the vault is deployed": we control when thedistribution module begins a new yield/reward period.
4) Once users receive usual to stake (after 7 day challenge period) they will also have time to stakeinto the vault before we begin the trigger the first yield period avoiding the opportunity for a firstdepositor to easily manipulate the shares to asset ratio.

24

https://github.com/usual-dao/pegasus/commit/2ff71241d4c86065855a29925b60343bbb5ce74a
https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/vaults/YieldBearingVault.sol#L13

DRA
FT

3.5.3 Excessive reward period duration can block future distributions
Severity: Informational
Context: RewardAccrualBase.sol#L176-L214
Description: The _startRewardDistribution() function in the contract allows setting up reward distribu-tion periods. However, it does not impose an upper limit on the duration of these periods. This oversightcould lead to a situation where an extremely long reward period is accidentally set, effectively blockingthe creation of new reward periods for an extended time.
Proof of Concept:
function test_poc_startRewardDistribution_large_duration() public {

uint256 amount = 1;

uint256 duration = 10000000000000000000000000 days;

deal(address(usualToken), address(distributionModule), amount);

vm.startPrank(address(distributionModule));

usualToken.approve(address(usualSP), amount);

usualSP.startRewardDistribution(amount, block.timestamp, block.timestamp + duration);

vm.stopPrank();

}

This test demonstrates that it's possible to set up a reward distribution period lasting for an extremelylong time (approximately 2.7e22 years), which would effectively prevent any new reward periods frombeing set up for an unreasonable duration.
Recommendation: Consider implementing amaximumduration for reward periods to prevent this issue.This can be done by adding a check in the _startRewardDistribution() function:

function _startRewardDistribution(uint256 rewardAmount, uint256 startTime, uint256 endTime)

internal

virtual

{

if (endTime <= startTime) {

revert EndTimeBeforeStartTime();

}

if (startTime < block.timestamp) {

revert StartTimeInPast();

}

if (rewardAmount == 0) {

revert AmountIsZero();

}

+ if (endTime - startTime > MAX_REWARD_DURATION) {

+ revert RewardDurationTooLong();

+ }

RewardAccrualBaseStorageV0 storage $ = _getRewardAccrualBaseDataStorage();

if (startTime < $.periodFinish) {

revert AlreadyStarted();

}

// ... rest of the function

}

Where MAX_REWARD_DURATION is a constant defined with a reasonable maximum duration, such as 30 days.This change ensures that reward periods cannot be set for unreasonably long durations, maintaining thecontract's ability to adapt to changing reward strategies over time.
Usual: Acknowledged.
Cantina Managed: Acknowledged.

25

https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/modules/RewardAccrualBase.sol#L176-L214

DRA
FT

3.5.4 Order of approval for distributions with same timestamp is not clearly defined
Severity: Informational
Context: DistributionModule.sol#L420-L482
Description: In the approveUnchallengedOffChainDistribution() function, when multiple distributionshave the same timestamp, the first one in the queue will be selected and approved, while subsequentdistributions with the same timestamp will be discarded. This behavior may not be intuitive, as onemightexpect more recently queued distributions to take precedence.
Proof of Concept:
function test_poc_approveUnchallengedOffChainDistribution_race_condition() external {

skip(1 days);

// Queue two distributions right after

// each other and approve

vm.startPrank(distributionOperator);

distributionModule.distributeUsualToBuckets(100, 100);

distributionModule.queueOffChainUsualDistribution(FIRST_MERKLE_ROOT);

distributionModule.queueOffChainUsualDistribution(SECOND_MERKLE_ROOT);

skip(USUAL_DISTRIBUTION_CHALLENGE_PERIOD + 1);

distributionModule.approveUnchallengedOffChainDistribution();

vm.stopPrank();

// The first merkle root was approved

// even though it appeared later in the queue

(uint256 timestamp, bytes32 merkleRoot) = distributionModule.getOffChainDistributionData();

assertEq(merkleRoot, FIRST_MERKLE_ROOT);

}

Recommendation: While this issue could be addressed by either:
1. Using queue position as a secondary sorting criterion (though queue reordering from challengesmakes this unreliable), or...
2. Enforcing unique timestamps by checking the entire queue (which would significantly increase gascosts).

Neither solution is optimal. Given the low likelihood of this scenario occurring and the complexity/cost ofpotential fixes, it is recommended to simply acknowledge this behavior in the documentation and ensureoperators are aware that distributions with identical timestamps will select the first queued distribution.
Usual: Acknowledged.
Cantina Managed: Acknowledged.
3.5.5 Updates to buckets' share of the distribution are applied retroactively
Severity: Informational
Context: DistributionModule.sol#L597-L635
Description: setBucketsDistribution() sets new values for the on-chain and off-chain buckets' percent-age of USUAL token rewards, but these values are applied retroactively to any pending distribution dura-tions.
This might not pose a significant problem because the buckets' distribution is not intended to be changedfrequently.
Recommendation: This can be solved by the dev team by making sure to change the distribution per-centages only immediately after the rewards for the latest duration get distributed. This way the newvalues will not get applied to any pending duration of the latest distribution cycle.
Usual: Retroactive bucket distribution changes are intentional. Bucket Percentages are also going tooccur very rarely (i.e. 1-2x every year), while the average distribution cycle is 24h.
Cantina Managed: Acknowledged.

26

https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/distribution/DistributionModule.sol#L420-L482
https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/distribution/DistributionModule.sol#L597-L635

DRA
FT

3.5.6 Documentation errors
Severity: Informational
Context: DistributionModule.sol#L714, IDistributionModule.sol#L83, IDistributionOperator.sol#L6, IOf-fChainDistributionChallenger.sol#L14
Description: At several places, the code comments are incorrect:

• IDistributionOperator.sol::distributeUsualToBuckets() → should be "Distribute Usual token
emissions to on-chain and off-chain buckets based on provided values".

• IOffChainDistributionChallenger.sol::challengeOffChainDistribution() → should be "Times-
tamp before which the off-chain distribution will be challenged".

• DistributionModule.sol::_markQueuedOffChainDistributionsAsChallenged() → should be"Timestamp before which the off-chain distribution will be challenged".
• IDistributionmodule.sol::claimOffChainDistribution() → should be "Total amount of Usual to-
ken rewards earned by the account up to this point".

Recommendation: Apply mentioned changes to the documentation.
Usual:Fixed in in commits f61c9fbd and 4b21dcfc.
Cantina Managed: Fixed.
3.5.7 Unclear naming of claimable function and missing reward query functionality
Severity: Informational
Context: UsualSP.sol#L465-L468
Description: Two issues have been identified in the UsualSP contract:
1. The function getClaimable() has an ambiguous name that does not specify which type of claimableamount it returns - original allocation or rewards. This ambiguity could lead to confusion and inte-gration errors if developers assume the wrong type of claimable amount.
2. There is no view function to query the distributed rewards for an account. While _earned() existsinternally, it cannot be used directly as a view function because it requires rewardPerTokenStored tobe up-to-date for accurate calculations.

Recommendation: Consider implementing the following changes:
1. Rename the existing function to be more specific:

- function getClaimable(address insider) external view returns (uint256) {

+ function getClaimableOriginalAllocation(address insider) external view returns (uint256) {

UsualSPStorageV0 storage $ = _usualSPStorageV0();

return _available($, insider);

}

2. Add a new view function to query rewards that calculates the up-to-date reward state and handlesthe zero lastRewardPerTokenUsed case:
function getClaimableRewards(address account) external view returns (uint256) {

RewardAccrualBaseStorageV0 storage $ = _getRewardAccrualBaseDataStorage();

uint256 rewardPerToken = _rewardPerToken();

uint256 accountBalance = balanceOf(account);

uint256 lastRewardPerTokenUsed = $.lastRewardPerTokenUsed[account];

uint256 rewardDelta = lastRewardPerTokenUsed == 0 ? 0 : $.rewardPerTokenStored -

lastRewardPerTokenUsed;↪→

return accountBalance.mulDiv(rewardDelta, 1e24, Math.Rounding.Floor) + $.rewards[account];

}

Usual: Fixed in commit 69788d3d.
Cantina Managed: Fixed. Note: the getClaimableRewards was not implemented.

27

https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/distribution/DistributionModule.sol#L714
https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/interfaces/distribution/IDistributionModule.sol#L83
https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/interfaces/distribution/IDistributionOperator.sol#L6
https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/interfaces/distribution/IOffChainDistributionChallenger.sol#L14
https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/interfaces/distribution/IOffChainDistributionChallenger.sol#L14
https://github.com/usual-dao/pegasus/commit/f61c9fbdb8d753e583af0a0f0d49c3f2887a1fa3
https://github.com/usual-dao/pegasus/commit/4b21dcfcecc4711578f9c94a9b5f218b586f40a5
https://github.com/usual-dao/pegasus/commit/fdaf9a6373491c9c9538506d997083743fcf7060/packages/solidity/src/token/UsualSP.sol#L465-L468
https://github.com/usual-dao/pegasus/commit/69788d3d6cc12b1ff7fcfc5a8f233bcf1a53ad54

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	High Risk
	Claiming original allocation without staking rewards can lead to total loss of rewards

	Medium Risk
	Claim reward function reverts after distribution period ends
	Incorrect total staked amount calculation leads to inaccurate reward distribution
	Inconsistent withdrawal fee calculation between redeem and withdraw functions
	User receives excess rewards for allocation after distribution start
	Gamma is never scaled in USUAL token distribution formula

	Low Risk
	Challenger role can propose off-chain distributions
	Incorrect mint cap check prevents valid claims in off-chain distribution
	Reducing allocation after partial claim can brick user accounts
	Offchain distribution can be challenged even after the challenge period is over
	Some reward amounts will be stuck in USUALSP contract
	Precision loss in reward distribution leads to dust amounts being stuck
	Rounding in withdrawal fee calculations can be abused to avoid fees
	Fee subtraction before yield update can cause arithmetic underflow
	Unnecessary precision loss when calculating the distribution rate
	Users unable to claim rewards after full withdrawal

	Gas Optimization
	Challenged off-chain distributions can be removed immediately
	Updating the global rewards state using _updateReward() can be optimized

	Informational
	Yield bearing vault initializer fails to initialize parent contracts
	YieldBearingVault is vulnerable to share inflation attack
	Excessive reward period duration can block future distributions
	Order of approval for distributions with same timestamp is not clearly defined
	Updates to buckets' share of the distribution are applied retroactively
	Documentation errors
	Unclear naming of claimable function and missing reward query functionality

