w SHERLOCK

Security Review For

Collaborative Audit Prepared For: Notional
Lead Security Expert(s): xiaoming90
Date Audited: January 7 - January 9, 2026

]

https://github.com/xiaoming9090

Introduction

TBA

Scope

Repository: notional-finance/notional-v4
Audited Commit: 86b597c0ecfb?ddcd22c07f8e2e20b69a07f83ef
Final Commit: 9f5e91le4bd3bdfO0edbé59e856e1c657190c6f738

Files:

src/interfaces/IMidas.sol
src/oracles/MidasUSDOracle.sol
src/proxy/AddressRegistry.sol
src/staking/AbstractStakingStrategy.sol
src/staking/MidasStakingStrategy.sol
src/staking/PendlePT.sol
src/staking/PendlePT_sUSDe.sol

src/withdraws/Midas.sol

Final Commit Hash

9f5e91e4bd3bdfOedb659e856e1c657190c6f738

Findings

Each issue has an assigned severity:

High issues are directly exploitable security vulnerabilities that need to be fixed.

Medium issues are security vulnerabilities that may not be directly exploitable or
may require certain conditions in order to be exploited. All major issues should be
addressed.

Low/Info issues are non-exploitable, informational findings that do not pose a
security risk or impact the system’s integrity. These issues are typically cosmetic or
related to compliance requirements, and are not considered a priority for
remediation.

https://github.com/notional-finance/notional-v4/tree/9f5e91e4bd3bdf0edb659e856e1c657190c6f738

Issues Found

High Medium

0] 1

Issues Not Fixed and Not Acknowledged

High Medium

0] 0]

Low/Info

13

Low/Info

0

Issue M-1: Valuation of withdraw request can be im-
proved [ACKNOWLEDGED]

Source: https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/
issues/16

This issue has been acknowledged by the team but won't be fixed at this time.

Vulnerability Detail

When Midas's withdraw request (WR) has not been finalized yet, the protocol will price
the pending WR via the getKnownWithdrawTokenAmount () function below. If the Strategy
Vault's asset is USDC, the function will return the price of the pending WR in USDC terms.

It was observed that the function uses request .mTokenRate, which was set when the
redemption request is submitted, to compute the value.

119:
120:
121:
122:
123:
124:
125:

—

126:
127:
128:

—

129
130:
ISHIN:

—

132:

—

133:

—

134:
135:
136:

function getKnownWithdrawTokenAmount (uint256 requestId)

{

public

view

override

returns (bool hasKnownAmount, uint256 amount)

IRedemptionVault.Request memory request =

redeemVault.redeemRequests (requestId) ;

be used

uint256 tokenDecimals = TokenUtils.getDecimals(WITHDRAW_TOKEN) ;
// NOTE: it is possible that the mTokenRate moves a bit but this will
// to value the withdraw request when it is pending.

hasKnownAmount = true;
// The request.mTokenRate will be updated when the request is

processed to the final rate.

amount = _truncate((request.amountMToken * request.mTokenRate) /

request.tokenOutRate, tokenDecimals);

// Midas vaults return the amount in 18 decimals but we need to

convert to the native

// token decimals here.
amount = (amount * 10 ** tokenDecimals) / 1e18 - 1;

Assume that it takes 3 days for Midas side to process a redemption request. Strategy
Vault's asset is USDC, and 1 USDC =1USD hardcoded.

1. On Day 1, the price of mMHYPER/USD is 1.06. A withdraw/redeem request is created,
the request.mTokenRate is locked at 1.06.

2. On Day 2, the price of mMHYPER/USD falls to 0.70 as one of its underlying

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/16
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/16

assets/investments suffers a significant loss.

3. On Day 3, the Midas's vault admin will approve the request via the following
function. Based on the mToken rate passed in by the admin, the converted USDC
will be transferred to WRM.

Note that the rate is determined by Midas's vault admin, and determine if approveR
equest or safeApproveRequest is called.

File: RedemptionVault.sol

457: * Oparam requestId request id

458: * Oparam newMTokenRate new mToken rate

459: * Oparam isSafe new mToken rate

460: * @param safeValidatelLiquidity if true, checks if there is enough
— liquidity

461 : * and if its not sufficient, function wont fail

462: *

463: * Q@return success true if success, false only in case if
464 : * safeValidateliquidity == true and there is not enough liquidity
465: */

466: function _approveRequest(

467 : uint256 requestld,

468: uint256 newMTokenRate,

469: bool isSafe,

470: bool safeValidateLiquidity

471:)

472: internal

473: returns (

474: bool /* success */

475:)

476: {

The issue is that when the price falls to 0.70, the WR s still calculated using the old rate
of 1.06, which overinflated it. When the actual price falls to 0.70 on Day 2, it is more likely
that on Day 3, the redeem request will be processed with a new mToken rate closer to the
actual price of 0.70 rather than 1.064, unless Midas is willing to absorb the loss.

On the other hand, if the price of mToken increases significantly during a short period of
time, the WR will be undervalued.

Impact

The WR will be overvalued or undervalued.

Code Snippet

https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649
dadbebé49614bf53c8/src/withdraws/Midas.sol#L119

https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L119
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L119

Tool Used

Manual Review

Recommendation

There is no reliable method to determine the actual newMTokenRate that Midas's vault
admin will pass into the _approveRequest () function to process the redeem request. Thus,
determining the mToken rate when the request is pending is a best-effort activity, since
no one can predict what value the vault admin will submit on-chain later.

On Midas side, it exposes a mToken/USD price oracle (IMidasDataFeed (midasVault .mToke
nDataFeed()) .aggregator ()). Assume that the Midas price oracle accurately reflects the
mToken's actual value. In this case, during a significant price swing, it is more likely that
the final newMTokenRate used by the vault admin will be a value somewhere close to the
rate returned by the mToken/USD price oracle rather than the old/stale rate locked when
the redeem request is submitted. The mToken/USD feed will provide a value more closely
aligned with the current NAV.

Discussion

T-Woodward

I'm not sure about this one. Like you said, you don't actually know what mTokenRate the
request will be processed at.

From my conversations with them, their treatment varies by vault. On most vaults they
will use the mTokenRate at the time of processing to pay you out, but on some vaults like
mF-ONE they say that they'll pay you out as of the mTokenRate you snapped at the time
of request.

From a risk standpoint I'm not sure if it really matters how we mark it. The account is
frozen at this point in time anyway. | suppose that the mark could affect whether
liquidations occur, but given that the account is already in the withdraw queue, it is likely
that any liquidator would just let the withdraw finalize first before liquidating anyway.

So | would argue that what we do here should primarily be concerned with UX and what
number makes most sense to show on the Ul to the user. We could | suppose have two
versions of this WRM, one where we use the current mTokenRate and one where we use
the old one and deploy a different according to the vault. | don't know, what do you
think Jeff?

jeffywu

Well there is a lot of uncertainty around how this might be handled since the admin has
four ways to finalize the request:

VET
* Onotice approving requests from the “requestlds™ array with the

* ¥ ¥ ¥ X *

current mToken rate. WONT fail even if there is not enough liquidity
to process all requests.

Does same validation as “safeApproveRequest’.

Transfers tokenOut to users

Sets request flags to Processed.

Oparam requestIlds request ids array

*/
function safeBulkApproveRequest(uint256[] calldata requestIds) external;

VAT

*

—

* X ¥ X * *

*/

Onotice approving requests from the “requestlds”™ array using the
"newMTokenRate™ .

WONT fail even if there is not enough liquidity to process all requests.

Does same validation as “safeApproveRequest’.

Transfers tokenOut to user

Sets request flags to Processed.

Oparam requestIlds request ids array

Oparam newMTokenRate new mToken rate inputted by vault admin

function safeBulkApproveRequest (

uint2566[] calldata requestIds,
uint256 newMTokenRate

) external;

Onotice approving redeem request if not exceed tokenOut allowance
Burns amount mToken from contract

Transfers tokenOut to user

Sets flag Processed

Oparam requestId request id

Oparam newMTokenRate new mToken rate inputted by vault admin

function approveRequest(uint256 requestId, uint256 newMTokenRate) external;

Onotice approving request if inputted token rate fit price diviation percent
Burns amount mToken from contract

Transfers tokenOut to user

Sets flag Processed

Oparam requestId request id

Oparam newMTokenRate new mToken rate inputted by vault admin

function safeApproveRequest(uint256 requestId, uint256 newMTokenRate)

external;

The "safe” version restricts the change in the mTokenRate and the "unsafe” version
allows them to set any rate they want.

In the scenario outlined in this issue, it's not clear how the requests would finalize. If we
pre-maturely mark the requests down to the oracle rate, then someone could front run

7

the user by watching the mempool and liquidating the account right before they
actually finalize the withdraw request at a higher valuation. | feel like it would be most
fair to allow the request to finalize at a valuation and then proceed with a liquidation.

Issue L-1: Potential pitfalls due to counterintuitive
minReceiveAmount on the Midas vaults [ACKNOWL-
EDGED]

Source:
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/?

This issue has been acknowledged by the team but won't be fixed at this time.

Vulnerability Detail

The Midas redemption vault expects the minReceiveAmount to be in 18 decimal precision.
Thus, if users want to receive 100 USDC, they must set the minReceiveAmount to be 100el8
instead of 100e6, which is counterintuitive and a potential pitfall.

File: MidasStakingStrategy.sol

24: function _executeInstantRedemption (

. .SNIP..

44: ERC20 (yieldToken) . checkApprove (address (redeemVault) ,

< yieldTokensToRedeem) ;

45: redeemVault.redeemInstant (address(asset), yieldTokensToRedeem,

<> minReceiveAmount) ;
. .SNIP..

File: TRedemptionVault.sol

146: * @param token(Out stable coin token address to redeem to

147: * Oparam amountMTokenIn amount of mToken to redeem (decimals 18)

148: * @param minReceiveAmount minimum expected amount of tokenOut to receive
— (decimals 18)

149: */

150: function redeemInstant (

151: address tokenOut,

152: uint256 amountMTokenIn,

163: uint256 minReceiveAmount

154 :) external;

Similarly, the Midas deposit vault expects the minReceiveAmount to be in 18 decimal
precision regardless of the native token decimails.

File: Midas.sol

60: function _stakeTokens(uint256 amount, bytes memory stakeData) internal
< override {

. .SNIP..

70: // Midas requires the amount to be in 18 decimals regardless of the

— native token decimals.

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/9

71: uint256 scaledAmount = amount * 1el18 / (10 *x*
< TokenUtils.getDecimals (STAKING_TOKEN)) ;

72: depositVault.depositInstant (STAKING_TOKEN, scaledAmount,
<> minReceiveAmount, i_referrerId);
73: }

File: IDepositVault.sol

157: * QOparam tokenIn address of tokenIn

1568: * @param amountToken amount of “tokenIn® that will be taken from user
— (decimals 18)

1569: * Oparam minReceiveAmount minimum expected amount of mToken to receive
— (decimals 18)

160: * Q@param referrerlId referrer id

161: */

162: function depositInstant (

163: address tokenln,

164: uint256 amountToken,

165: uint256 minReceiveAmount,

166: bytes32 referrerIld

167:) external;
Impact

Users might configure the minimum expected amount in the wrong decimals.

Code Snippet
https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd7

04d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L45

https://github.com/notional-finance/notional-exponent/blob/adb8c25lefef419e316649

dadbeb649614bf53c8/src/withdraws/Midas.sol#L72

Tool Used

Manual Review
Recommendation

Consider documenting clearly that the minReceiveAmount for Midas related function
must be in 18 decimals.

10

https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd704d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L45
https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd704d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L45
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L72
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L72

Issue L-2: Residual allowance after redeemInstant is
executed [RESOLVED]

Source: https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/
issues/10

Vulnerability Detail

Assume that the caller wants to redeem 100 mToken (Yield Token). In this case, Line 44
will grant 100 mToken allowance to the redeemvVault. If the fee is 0.5%, Midas will charge
0.5 mToken, and the remaining 99.5 mToken will be converted to USDC.

File: MidasStakingStrategy.sol

24: function _executelInstantRedemption(

25: address sharesOwner,

26: uint256 yieldTokensToRedeem,

215 bytes memory redeemData

28:)

. .SNIP..

41: uint256 assetsBefore = TokenUtils.tokenBalance(asset);

42: (uint256 minReceiveAmount) = abi.decode(redeemData, (uint256)) ;
43:

44: ERC20 (yieldToken) .checkApprove (address (redeemVault) ,

— yieldTokensToRedeem) ;

45: redeemVault.redeemInstant (address(asset), yieldTokensToRedeem,

< minReceiveAmount) ;

The following is taken from the Midas redemption vault's source code. Within the redeem
Instant () function, 99.5 mToken will be burned. However, when mToken is burned, the
allowance is not consumed. Thus, when MidasStakingStrategy grants 100 mToken
allowance to the redemption vault, only 0.5 mToken will be consumed, and there will be a
residual allowance of 99.5 mToken.

File: RedemptionVault.sol

551: function _redeemInstant(

. .SNIP..

599: mToken.burn(user, calcResult.amountMTokenWithoutFee) ;
600: if (calcResult.feeAmount > 0)

601: _tokenTransferFromUser (

602: address (mToken) ,

603: feeReceiver,

604 : calcResult.feeAmount,

605: 18

606:)8

The following is a simple test script to demonstrate this:

1

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/10
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/10

// SPDX-License-Identifier: MIT
pragma solidity ~0.8.20;

import "forge-std/Test.sol";
import "forge-std/console2.sol";

interface IERC20 {
function approve(address spender, uint256 amount) external returns (bool);
function allowance(address owner, address spender) external view returns
— (uint256) ;
function balanceOf (address) external view returns (uint256);

interface IRedeemVault {
// no return value
function redeemInstant(address tokenOut, uint256 amountMTokenIn, uint256
< minReceiveAmount) external;

contract RedeemInstantAllowanceTest is Test {
address constant MHYPER = 0x9b5528528656DBC094765E2abB79F293¢c21191B9;
address constant REDEEM_VAULT = 0x6Be2f55816efd0d91£52720£096006d63c366e98;
address constant USDC = 0xA0b86991c6218b36c1d19D4a2e9EbOcE3606eB43;
address bob;
function setUp() public {

vm.createSelectFork (vm.rpcUrl("mainnet"));
bob = makeAddr ("bob") ;

function test_redeemInstant_printResidualAllowance() public {
uint256 amountIn = 100e18;
deal (MHYPER, bob, amountIn, true);

vm. prank (bob) ;
TIERC20 (MHYPER) . approve (REDEEM_VAULT, amountIn) ;

uint256 usdcBefore = IERC20(USDC) .balanceOf (bob) ;

vm. prank (bob) ;
IRedeemVault (REDEEM_VAULT) .redeemInstant (USDC, amountIn, O0);

uint256 usdcAfter = IERC20(USDC) .balanceOf (bob) ;
uint256 usdcOut = usdcAfter - usdcBefore;

console2.log("Bob USDC received:", usdcOut);

12

console2.log("Residual mHYPER allowance:", IERC20(MHYPER).allowance (bob,
< REDEEM_VAULT));

Ran 1 test for test/RedeemInstantAllowance.t.sol:RedeemInstantAllowanceTest
[PASS] test_redeemInstant_printResidualAllowance() (gas: 561198)
Logs:

Bob USDC received: 106254523

Residual mHYPER allowance: 99500000000000000000

Impact

Residual allowance will remain even after the redemption operation.

Code Snippet

https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd7
04d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L45

Tool Used

Manual Review

Recommendation

Consider explicitly resetting the allowance back to zero immediately after the redeemVau
1t .redeemInstant () function is executed. Alternatively, consider only granting the fee
amount (e.g., 0.5 mToken in this scenario), but this solution is more engineering efforts.

13

https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd704d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L45
https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd704d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L45

Issue L-3: Subtracting 1 from tokensClaimed is un-
necessary [ACKNOWLEDGED]

Source:
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/11

This issue has been acknowledged by the team but won't be fixed at this time.

Vulnerability Detail

It is unnecessary to subtract 1 unit in Line 111 below because the tokensClaimed
calculation below follows the approach done within the Midas vaults, except for the -1.

File: Midas.sol

094: function _finalizeWithdrawImpl (

095: address, /* account */

096: uint256 requestIld

097:)

098: internal

099: override

100: returns (uint256 tokensClaimed)

101: {

102: IRedemptionVault.Request memory request =

< redeemVault.redeemRequests(requestId);

103: require(request.status == MidasRequestStatus.Processed);

104: uint256 tokenDecimals = TokenUtils.getDecimals (WITHDRAW_TOKEN) ;

105:

106: // Once the request is processed, the tokens are transferred to this
— contract so we calculate the

107: // amount of tokens claimed and return it. This is not ideal since we
— don't pull the tokens but it

108: // is how the Midas vault works.

109: tokensClaimed = _truncate((request.amountMToken * request.mTokenRate)
< / request.tokenOutRate, tokenDecimals);

110: // Convert to the native token decimals, subtract 1 unit to account
— for any rounding errors.

111: tokensClaimed = (tokensClaimed * 10 ** tokenDecimals) / 1el8 - 1;
112: }

The _truncate in Line 109 within the finalizeWithdrawImpl() function is exactly what is

done within the RedemptionVault._approveRequest () function. So, this partis fine. The to
kensClaimed after _truncate is guaranteed to be a multiple of 10(18-tokenDecimals) (for

tokenDecimals < 18).

Let's review the second part, which converts 18 decimals to native token decimals in Line
111 within the finalizeWithdrawImpl() function.

File: RedemptionVault.sol

14

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/11

466: function _approveRequest(

467 : uint256 requestld,

468: uint256 newMTokenRate,

469: bool isSafe,

470: bool safeValidateLiquidity

471:)

. .SNIP..

489: uint256 amountTokenOutWithoutFee = _truncate(
490: (request.amountMToken * newMTokenRate) / request.tokenOutRate,
491: tokenDecimals

492:);

. .SNIP..

506: _tokenTransferFromTo (

507: request.tokenlOut,

508: requestRedeemer,

509: request.sender,

510: amountTokenOutWithoutFee,

511: tokenDecimals

512:)3

. .SNIP..

519: request.status = RequestStatus.Processed;
520: request.mTokenRate = newMTokenRate;

521: redeemRequests[requestId] = request;

Within the Midas redemption vault, the conversion is done within the DecimalsCorrection
Library.convertFromBase18() -> DecimalsCorrectionLibrary.convert () function.

File: ManageableVault.sol

441 : function _tokenTransferFromTo(

4472 address token,

443: address from,

444 . address to,

445: uint256 amount,

446: uint256 tokenDecimals

447 :) internal {

448 uint256 transferAmount = amount.convertFromBasel8(tokenDecimals) ;
. .SNIP..

455:; IERC20(token) .safeTransferFrom(from, to, transferAmount) ;
456: }

File: DecimalsCorrectionLibrary.sol

18: function convert(

18 uint256 originalAmount,

20: uint256 originalDecimals, // Qaudit-info 18

21: uint256 decidedDecimals // Qaudit-info 6

22:) internal pure returns (uint256) {

23: if (originalAmount == 0) return 0;

24: if (originalDecimals == decidedDecimals) return originalAmount;
25:

15

26: uint256 adjustedAmount;

27:

28: if (originalDecimals > decidedDecimals) {

298 adjustedAmount =

30: originalAmount /

31: (10** (originalDecimals - decidedDecimals));
32: } else {

Notional uses:

(tokensClaimed * 10 ** tokenDecimals) / 1el8

Which is exactly the same as:

tokensClaimed.convertFromBasel18(tokenDecimals)

So without -1, Notional would return exactly the number of tokens Midas transferred to
the WRM.

In addition, -1 introduced a small risk of revert due to underflow. If tokensClaimed is small,
the numerator will round down to O, and subtracting 1 will cause an underflow and revert.

tokensClaimed = (tokensClaimed * 10 ** tokenDecimals) / 1el8 - 1;

The same issue applies to the MidasWithdrawRequestManager . getKnownWithdrawTokenAmou
nt () function.

Impact

There is a risk of revert and underflow for small requests, and requests are slightly
understated by 1 wei.

Code Snippet

https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649
dadbebé49614bf53c8/src/withdraws/Midas.sol#LI11

https://github.com/notional-finance/notional-exponent/blob/adb8c25lefef419e316649
dadbebé49614bf53c8/src/withdraws/Midas.sol#L135

Tool Used

Manual Review

16

https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L111
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L111
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L135
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L135

Recommendation
Consider removing the -1.

(tokensClaimed * 10 ** tokenDecimals) / 1e18 - 1;
(tokensClaimed * 10 ** tokenDecimals) / 1el8;

- tokensClaimed
+ tokensClaimed

Since the DecimalsCorrectionLibrary, which Midas uses, is already imported into the
protocol, it is also recommended to use the same library function to ensure 100%
alignment.

(tokensClaimed * 10 ** tokenDecimals) / 1el8;
tokensClaimed.convertFromBasel18(tokenDecimals) ;

- tokensClaimed
+ tokensClaimed

In this case, the computed tokensClaimed will match exactly the amount of tokens Midas
transferred to the WRM, and there is no ambiguity.
Discussion

jeffywu

Confirmed, however, I'd prefer to just keep it as is. | think leaving a bit of dust back will
not have any harm.

17

Issue L-4: Incorrect updatedAt returned from Midas
USDOracle [RESOLVED]

Source: https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/
issues/12

Vulnerability Detail

Within the MidasUSDOracle._calculateBaseToQuote (), the price returned uses "answer”
from both:

1. midasOracle (MHYPER/USD)
2. usdcToUSDOracle (USDC/USD)

However, it was observed that the updatedAt returned by this function only depends on
the updatedAt returned by the midasOracle.

Assume that the midasOracle.updatedAt is very recent (passes freshness checks), but usdc
ToUSDOracle is stale (not updated for a long time). In this case, the oracle still returns the
price with the more recent timestamp.

File: MidasUSDOracle.sol

27 function _calculateBaseToQuote()

28: internal

29: view

30: override

31: returns (uint80 roundId, int256 answer, uint256 startedAt, uint256
— updatedAt, uint80 answeredInRound)

Bk {

SSE int256 mTokenRate;

34: (roundId, mTokenRate, startedAt, updatedAt, answeredInRound) =

> midasOracle.latestRoundData();

S5k // Offset the USDC/USD rate to ensure that the USDC/USD rate is

— hardcoded to 1 in the trading

36: // module. In the vaults we request the mToken/USDC rate so we want to
— offset any USDC variations here.

37: int256 usdcToUSD;

38: (, usdcToUSD,,,) = usdcToUSDOracle.latestRoundData() ;

39: require(usdcToUSD > O && mTokenRate > O, "Chainlink Rate Error");
40: answer = (mTokenRate * usdcToUSD * 1e18) / (usdcToUSDDecimals *

< midasDecimals) ;

41: }

When the TradingModule.getOraclePrice() performs a stale price check here, it will
wrongly assume that the price is fresh, while in reality it is not because one of its factors
(USDC/USD) is stale.

18

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/12
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/12
https://github.com/notional-finance/leveraged-vaults/blob/7e0abc3e118db0abb20c7521c6f53f1762fdf562/contracts/trading/TradingModule.sol#L275

Impact

Incorrect updatedAt is being returned, preventing the downstream module from
detecting a stale price.

Code Snippet

https://github.com/notional-finance/notional-exponent/blob/86b597c0ecfb?ddcd22c
07f8e2e20b69a07f83ef/src/oracles/MidasUSDOracle.sol#L27

Tool Used

Manual Review
Recommendation

Consider setting updatedAt to the oldest timestamp from both answers. For instance, upd
atedAt = min(updatedAt_midas, updatedAt_usdc).

19

https://github.com/notional-finance/notional-exponent/blob/86b597c0ecfb9ddcd22c07f8e2e20b69a07f83ef/src/oracles/MidasUSDOracle.sol#L27
https://github.com/notional-finance/notional-exponent/blob/86b597c0ecfb9ddcd22c07f8e2e20b69a07f83ef/src/oracles/MidasUSDOracle.sol#L27

Issue L-5: Hardcoded USDC/USD oracle address [RE-
SOLVED]

Source: https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/
issues/13

Vulnerability Detail

The MidasUSDOracle oracle return (mHYPER/USD * USDC/USD) rate in 18 decimals. Note:
mHYPER/USD => base/quote in this report.

File: MidasUSDOracle.sol
11: contract MidasUSDOracle is AbstractCustomOracle {

. .SNIP..
27: function _calculateBaseToQuote()
. .SNIP..
32: {
333 int256 mTokenRate;
34: (roundId, mTokenRate, startedAt, updatedAt, answeredInRound) =
«» midasOracle.latestRoundData() ;
B5E // Offset the USDC/USD rate to ensure that the USDC/USD rate is
— hardcoded to 1 in the trading
36: // module. In the vaults we request the mToken/USDC rate so we want to
— offset any USDC variations here.
37: int256 usdcToUSD;
38: (, usdcToUSD,,,) = usdcToUSDOracle.latestRoundData() ;
39: require(usdcToUSD > O && mTokenRate > O, "Chainlink Rate Error");
40: answer = (mTokenRate * usdcToUSD * 1e18) / (usdcToUSDDecimals *
s midasDecimals);
41: }
42: }
43:

This value is used within the TradingModule.getOraclePrice (baseToken=mHYPER, quoteTok
en=USDC). Note that the USDC/USD will cancel off and be equal to one in the formula.

answer = [(mHYPER/USD * USDC/USD * 1el8) * 1e18 * 1e18] / [(USDC/USD * 1e18) *
answer = mHYPER/USD * 1e18 (hardcoded 1 USDC = 1 USD)

https://github.com/notional-finance/leveraged-vaults/blob/7e0abc3el1l8db0abb20c75
21c6f53f1762fdf562/contracts/trading/TradingModule.sol#L.284

function getOraclePrice(address baseToken, address quoteToken)
. .SNIP..
answer =
(basePrice * quoteDecimals * RATE_DECIMALS) /

20

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/13
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/13
https://github.com/notional-finance/leveraged-vaults/blob/7e0abc3e118db0abb20c7521c6f53f1762fdf562/contracts/trading/TradingModule.sol#L284
https://github.com/notional-finance/leveraged-vaults/blob/7e0abc3e118db0abb20c7521c6f53f1762fdf562/contracts/trading/TradingModule.sol#L284

(quotePrice * baseDecimals) ;
decimals = RATE_DECIMALS;

So when fetching the price of mMHYPER/USDC via the TradingModule.getOraclePrice()
function, it assumes that 1 USDC is always equal to 1 USD. For this to work, the USDC/USD
price oracle used by the MidasUSDOracle and TradingModule must be the same.
Otherwise, the math will not work.

However, it was observed that the USDC/USD oracle is hardcoded to 0x8fFfFfd4AfB6115
b954Bd326cbe7B4BA576818f6 within the MidasUSDOracle. Thus, if the USDC/USD oracle in
the TradingModule gets updated to another price oracle, the price returned from Trading
Module.getOraclePrice(baseToken=mHYPER, quoteToken=USDC) will be invalid.

File: MidasUSDOracle.sol
11: contract MidasUSDOracle is AbstractCustomOracle {

12: using TypeConvert for uint256;

13:

14: AggregatorV2V3Interface public constant usdcToUSDOracle =

15: AggregatorV2V3Interface (0x8fFfFfd4AfB6115b954Bd326cbe7B4BA576818£6) ;
i3 AggregatorV2V3Interface public immutable midasOracle;

17: int256 public immutable usdcToUSDDecimals;

18: int256 public immutable midasDecimals;

193

20: constructor(string memory description_, IMidasVault midasVault_)

< AbstractCustomOracle(description_, address(0)) {

21: require(block.chainid == CHAIN_ID_MAINNET);

22: usdcToUSDDecimals = int256(10 ** usdcToUSDOracle.decimals()) ;

PACH midasOracle = AggregatorV2V3Interface(IMidasDataFeed(midasVault_.mToken
< DataFeed()) .aggregator()) ;mHYPER/USD oracle

24 : midasDecimals = int256(10 ** midasOracle.decimals());

25: }

Impact

The price returned by TradingModule.getOraclePrice(baseToken=mHYPER, quoteToken=USD
C) might be invalid if the USDC/USD price oracle is updated.

Code Snippet

https://github.com/notional-finance/notional-exponent/blob/86b597c0ecfb?ddcd22c
07f8e2e20b69a07f83ef/src/oracles/MidasUSDOracle.sol#L15

Tool Used

Manual Review

2]

https://github.com/notional-finance/notional-exponent/blob/86b597c0ecfb9ddcd22c07f8e2e20b69a07f83ef/src/oracles/MidasUSDOracle.sol#L15
https://github.com/notional-finance/notional-exponent/blob/86b597c0ecfb9ddcd22c07f8e2e20b69a07f83ef/src/oracles/MidasUSDOracle.sol#L15

Recommendation

Instead of hardcoding the USDC/USD in the MidasUSDOracle, consider fetching the
USDC/USD oracle address from TradingModule's priceOracles [USDC] . oracle.

Discussion

T-Woodward
Noted

22

Issue L-6: TradingModule.getOraclePrice (mHYPER,
XXXXxX) will not work as intended [ACKNOWLEDGED]

Source: https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/
issues/14

This issue has been acknowledged by the team but won't be fixed at this time.

Vulnerability Detail

Based on the name of the oracle (MidasUSDOracle), one might assume that this oracle
returns the price of mMHYPER/USD. However, the oracle returns the price of
(mHYPER/USD * USDC/USD). Note: mHYPER/USD => base/quote in this report.

However, if one executes TradingModule.getOraclePrice (mHYPER, WETH), it will not return
the price of mMHYPER/WETH. Instead, it will return the price of (NHYPER/WETH *
USDC/USD).

Impact

If the protocol intends to support a pair with mHYPER and non-USDC tokens, using Midas
USDOracle directly within the TradingModule.getOraclePrice () will not return the correct
price.

Code Snippet

https://github.com/notional-finance/notional-exponent/blob/86b597c0ecfb?ddcd22c
07f8e2e20b69a07f83ef/src/oracles/MidasUSDOracle.sol#L11

Tool Used

Manual Review

Recommendation

Be aware of this pitfall, and consider documenting this.

23

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/14
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/14
https://github.com/notional-finance/notional-exponent/blob/86b597c0ecfb9ddcd22c07f8e2e20b69a07f83ef/src/oracles/MidasUSDOracle.sol#L11
https://github.com/notional-finance/notional-exponent/blob/86b597c0ecfb9ddcd22c07f8e2e20b69a07f83ef/src/oracles/MidasUSDOracle.sol#L11

Issue L-7: Decimal precision of the rate returned from
the MidasWithdrawRequestManager.getExchangeRate
() function deviates from other WRMs

Source: https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/
issues/15

Vulnerability Detail

All other WithdrawRequestManager's getExchangeRate () returns the exchange rate in
Native precision. However, the MidasWithdrawRequestManager . getExchangeRate ()
function returns the exchange rate in 18 decimals, although the underlying asset is USDC
denominated in 6 decimals precision.

File: Midas.sol

143: function getExchangeRate() public view override returns (uint256 rate) {
144 : IMidasVault.TokenConfig memory tokenConfig =

— redeemVault.tokensConfig(WITHDRAW_TOKEN) ;

145: rate = IMidasDataFeed(redeemVault.mTokenDataFeed()) .getDataInBasel8();
146: if (!tokenConfig.stable) {

147: uint256 tokenRate =

< IMidasDataFeed(tokenConfig.dataFeed) .getDataInBasel8() ;

148: rate = 1el8 * rate / tokenRate;

149: iy

150: }
Impact

Anyone who relies on WithdrawRequestManager's getExchangeRate () might receive
results with inconsistent decimal precision.

Code Snippet

https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649
dadbebé49614bf53c8/src/withdraws/Midas.sol#L143

Tool Used

Manual Review

24

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/15
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/15
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L143
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L143

Recommendation

Ensure that the rate returned from all WithdrawRequestManager's getExchangeRate ()
follows a consistent decimal precision. Consider using convertFromBase18(tokenDecimals
) to convert the rate in 18 decimals back to native precision.

Discussion

jeffywu
Will Fix

25

Issue L-8: Handling of cancelled redeem request [AC-
KNOWLEDGED]

Source: https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/
issues/17

This issue has been acknowledged by the team but won't be fixed at this time.

Vulnerability Detail

Per Midas's redemption vault code, it is possible for a vault admin to cancel a redeem
request.

File: RedemptionVault.sol

359:
360:
361:
362:
363:
364 :
365:
366:
367:

function rejectRequest(uint256 requestId) external onlyVaultAdmin {
Request memory request = redeemRequests[requestId];

_validateRequest (request.sender, request.status);
redeemRequests[requestId] .status = RequestStatus.Canceled;

emit RejectRequest(requestld, request.sender);

Consider a scenario where a redeem request is cancelled, and its side-effect/impact on
the existing withdraw requests (WR)

1. Within the protocol, the getKnownWithdrawTokenAmount () function will continue to

treat it as pending and still return a positive value even if it is likely that a cancel
request will not be paid out. If that is the case, the WR will be overvalued.

During redemption, the mToken was transferred into the redemption vault when the
request was created. When a request is cancelled, Midas does not automatically
refund the mToken that was not processed, and will mark the request's status to Can
celed. Since Notional will only consider the WR to be processed if request.status =
= MidasRequestStatus.Processed, the finalization will always fail, and the WR will
remain stuck.

Note. Once Midas cancels a redeem request, the admin cannot execute the _approveReq
uest () function to process the redeem request anymore. So, the change in the redeem
request's status is final.

19
120:
121:
122:
123:
124:

function getKnownWithdrawTokenAmount(uint256 requestId)
public
view
override
returns (bool hasKnownAmount, uint256 amount)

26

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/17
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/17

125: IRedemptionVault.Request memory request =
< redeemVault.redeemRequests (requestId) ;

126: uint256 tokenDecimals = TokenUtils.getDecimals(WITHDRAW_TOKEN) ;
127:

128: // NOTE: it is possible that the mTokenRate moves a bit but this will
— be used

129: // to value the withdraw request when it is pending.

130: hasKnownAmount = true;

131: // The request.mTokenRate will be updated when the request is

— processed to the final rate.

132: amount = _truncate((request.amountMToken * request.mTokenRate) /
< request.tokenOutRate, tokenDecimals);

133: // Midas vaults return the amount in 18 decimals but we need to
— convert to the native

134: // token decimals here.

135: amount = (amount * 10 ** tokenDecimals) / 1el18 - 1;

136: }
Impact

When a redeem request is cancelled, the WR might be overvalued, and the WR remains
stuck.

Code Snippet

https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649
dadbebé49614bf53c8/src/withdraws/Midas.sol#L119

Tool Used

Manual Review

Recommendation

Consider the edge case above and whether additional processing is needed to handle
these scenarios. Check with Midas's protocol team to understand under what conditions
a redeem request would be cancelled, whether a refund will be issued, whether there is
any policy/SLA, and what happens after a cancellation. Their answer will determine how
a cancelled redeem request should be valued and handled.

Discussion
T-Woodward

27

https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L119
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L119

Yeah have done. Basically, they have said that redeem request cancellation should
never happen. In the event that it does, the current behavior is the best we could hope
for - account is frozen and no one will liquidate. At this point we would need to do
something manual and likely would need to upgrade the contract.

| don't think there's really a way to handle this correctly because it's not clear why this
would happen, what it would mean, or what would happen next. Additionally, Midas will
already have the mTokens so we can't just clear the withdraw request. | think if anything,
maybe you add a function that would allow us to change the withdraw request status
from cancelled to processed because that's probably what we would eventually do.
Midas would just send us the tokens and we manually change the request status.

28

Issue L-9: Midas operational limits can block deposit
and redemption [ACKNOWLEDGED]

Source: https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/
issues/18

This issue has been acknowledged by the team but won't be fixed at this time.

Vulnerability Detail

Midas protocol enforces the following limits for its deposit and instant redemption
features:

The deposit function relies on depositInstant () function, which is subject to the
following limit:

1. Instant Daily Limit (_requireAndUpdateLimit) - 20 million mToken at the time of audit

2. Per-token allowance (_requireAndUpdateAllowance) - 116 million USDC at the time of
audit

3. Max supply cap (_validateMaxSupplyCap) - 2256-1 at the time of audit

The instant redemption path relies on redeemInstant function, which is subject to the
following limit:

1. Instant Daily Limit (_requireAndUpdateLimit) - 20 million mToken at the time of audit

2. Per-token allowance (_requireAndUpdateAllowance) - 202 million USDC at the time
of audit

Impact

Users will not be able to deposit and perform instant redemption if any of the above
limits are reached

Code Snippet

https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649
dadbebé49614bf53c8/src/withdraws/Midas.sol#L72

https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd7
04d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L45

Tool Used

Manual Review

29

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/18
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/18
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L72
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L72
https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd704d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L45
https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd704d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L45

Recommendation

Since the limits are currently set high, it is unlikely that any deposit or redemption will
exceed them. Thus, this is purely informational, and the team might want to consider
operationally monitoring the allowance/limits or documenting them.

Discussion

T-Woodward
Noted

30

Issue L-10: Decoding will revert if asset != staking
token [RESOLVED]

Source: https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/
issues/19

Vulnerability Detail

Assume that the staking token is USDC, while the Strategy Vault's asset is USDT.

In the MidasStakingStrategy. mintYieldTokens function, it takes the depositData and
force it into "stakeData” with the (receiver, minReceiveAmount) format. So, if the users
provide a StakingTradeParams data, it will be ignored and overwritten.

File: MidasStakingStrategy.sol

17: function _mintYieldTokens(uint256 assets, address receiver, bytes memory
— depositData) internal override {

18: (uint256 minReceiveAmount) = abi.decode(depositData, (uint256));

19: // Ensure that we encode the proper receiver here for KYC checks.
20: bytes memory stakeData = abi.encode(receiver, minReceiveAmount) ;

21: super._mintYieldTokens (assets, receiver, stakeData);

22: }

The withdrawRequestManager.stakeTokens (address(asset), assets, depositData) will be
executed later, which will execute preStakingTrade() function internally in Line 108

File: AbstractWithdrawRequestManager.sol

095: function stakeTokens (

096: address depositToken,

097: uint256 amount,

098: bytes calldata data

099:)

. .SNIP..

106: uint256 initialYieldTokenBalance =

< ERC20(YIELD_TOKEN) .balanceOf (address(this));

107: ERC20 (depositToken) .safeTransferFrom(msg.sender, address(this),
— amount) ;

108: (uint256 stakeTokenAmount, bytes memory stakeData) =
— _preStakingTrade (depositToken, amount, data);

109: _stakeTokens (stakeTokenAmount, stakeData);

When the _preStakingTrade () function is executed, since depositToken != STAKING_TOKE
N, it will attempt to decode the data as if it were a StakingTradeParams data in Line 342.
As a result, the abi.decode will revert.

File: AbstractWithdrawRequestManager.sol
330: function _preStakingTrade(

3l

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/19
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/19

331: address depositToken,

332: uint256 depositAmount,

333: bytes calldata data

334:)

335: internal

336: returns (uint256 amountBought, bytes memory stakeData)
337: {

338: if (depositToken == STAKING_TOKEN) {

339: amountBought = depositAmount;

340: stakeData = data;

341: } else {

342: StakingTradeParams memory params = abi.decode(data,
< (StakingTradeParams)) ;

343: stakeData = params.stakeData;

344:

Impact

Staking will revert if Strategy Vault's asset is not equal to the staking token asset.

Code Snippet

https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd7
04d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L18

Tool Used

Manual Review

Recommendation

For the Midas integration, review whether the protocol only supports a setup where the
Strategy Vault's asset equals the staking token asset. If not, the approach of encoding
the account/receiver needs to be updated (e.g., decode depositData as StakingTradePar
ams and overwrite the params.stakeData = abi.encode(receiver, minReceiveAmount)).

Discussion

T-Woodward

This could be an issue for mHYPERBTC. wBTC and cbBTC are payment tokens on deposit,
but only cbBTC is a payment token on redeem. So currently we would not be able to pair
this vault against wBTC borrow which will be necessary.

_executelnstantRedemption also does not work if asset != staking token.

S

https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd704d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L18
https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd704d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L18

Issue L-11: Hardcoded MidasAccessControl and MIDA
S_GREENLISTED ROLE [RESOLVED]

Source: https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/
issues/20

Vulnerability Detail

It was observed that the MidasAccessControl and MIDAS_GREENLISTED ROLE are
hardcoded.

File: IMidas.sol

64: IMidasAccessControl constant MidasAccessControl =

< IMidasAccessControl (0x0312A9D1Ff2372DDEdCBB21e4B6389aFc919aC4B) ;
65: bytes32 constant MIDAS_GREENLISTED_ROLE =

— 0xd2576bd6adc5558421de15cb8ecdf4eb3282aac06b94d4£004e8cd0d00f3ebd8;

File: Midas.sol

60: function _stakeTokens(uint256 amount, bytes memory stakeData) internal
< override {

61: // NOTE: account must be encoded by the vault in the stake data, not
< provided by the user.

62: (address account, uint256 minReceiveAmount) = abi.decode(stakeData,
— (address, uint256));

63: if (depositVault.greenlistEnabled()) {

64: // Ensures that any KYC checks are respected.

65: require(MidasAccessControl.hasRole (MIDAS_GREENLISTED_ ROLE,

— account), "Midas: account is not greenlisted");

66: +

File: Midas.sol

¢ function _initiateWithdrawImpl (

. .SNIP..

84: {

85: if (redeemVault.greenlistEnabled()) {

86: // Ensures that any KYC checks are respected.

87: require (MidasAccessControl.hasRole (MIDAS_GREENLISTED ROLE,
— account), "Midas: account is not greenlisted");

88: i

If Midas migrates to a new access control contract or uses a different access control
contract for their vaults, the checks will be incorrect and based on the outdated access
control contract.

Impact

33

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/20
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/20

Code Snippet

https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649
dadbebé49614bf53c8/src/withdraws/Midas.sol#L65

https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649
dadbebé49614bf53c8/src/withdraws/Midas.sol#L87

Tool Used

Manual Review

Recommendation

Consider deriving the access control contract address and role bytes from the vaults
directly:

e IMidasAccessControl ac = redeemVault.accessControl();

e bytes32 greenlListedRole = ac.GREENLISTED ROLE();

Discussion
T-Woodward

Seems a fine change to me

34

https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L65
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L65
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L87
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L87

Issue L-12: Midas blacklist and sanction [RESOLVED]

Source: https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/
issues/21

Vulnerability Detail

It was observed that the protocol performs the require (MidasAccessControl.hasRole (MI
DAS_GREENLISTED ROLE, sharesOwner), ...); checksinMidasWithdrawRequestManager. s
takeTokens and MidasWithdrawRequestManager. initiateWithdrawImpl functions to
prevent non-KYCed users from depositing or redeeming when Midas's greenlist is
enabled.

File: Midas.sol

60: function _stakeTokens(uint256 amount, bytes memory stakeData) internal
< override {

61: // NOTE: account must be encoded by the vault in the stake data, not
— provided by the user.

62: (address account, uint256 minReceiveAmount) = abi.decode(stakeData,
«» (address, uint256));

63: if (depositVault.greenlistEnabled()) {

64: // Ensures that any KYC checks are respected.

65: require(MidasAccessControl.hasRole (MIDAS_GREENLISTED_ROLE,

< account), "Midas: account is not greenlisted");

66: }

. .SNIP..

75k function _initiateWithdrawImpl (

. .SNIP..

85: if (redeemVault.greenlistEnabled()) {

86: // Ensures that any KYC checks are respected.

87: require (MidasAccessControl.hasRole (MIDAS_GREENLISTED ROLE,

— account), "Midas: account is not greenlisted");

88: b

However, Midas also imposes other restrictions on users, but these were not checked in
the MidasWithdrawRequestManager.

» sanctioned (sanctionsList.isSanctioned(user))

« blacklisted (BLACKLISTED ROLE)

Impact

Since the MidasWithdrawRequestManager does not check if the account is sanctioned or
blacklisted by Midas, they could utilize Notional contracts to deposit or redeem funds,
which could potentially cause Notional contracts to be sanctioned or blacklisted by
Midas too.

35

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/21
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/21

Code Snippet

https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649
dadbebé49614bf53c8/src/withdraws/Midas.sol#L63

https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd7
04d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L35

Tool Used

Manual Review

Recommendation

Consider implementing additional checks to ensure that addresses blacklisted or
sanctioned by Midas cannot use Notional contracts as a proxy to transfer funds.

On a side note, be aware of the risk that greenlisting, blacklisting, and sanctioning can
also be applied to Notional contracts, which can lead to funds being stuck due to
inability to redeem them.

Discussion
T-Woodward

Yes valid. We should add these checks as well

36

https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L63
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L63
https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd704d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L35
https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd704d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L35

Issue L-13: minAmount feature of Midas's DepositVault
and RedemptionVault [ACKNOWLEDGED]

Source: https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/
issues/22

This issue has been acknowledged by the team but won't be fixed at this time.

Vulnerability Detail

It was observed that the Midas's DepositVault and RedemptionVault has a minAmount
feature. At the time of the audit, the minAmount was set to O for both vaults, effectively
disabling it.

The following is a code snippet extracted from Midas's deposit and redeem vaults.

File: ManageableVault.sol

282: VAL

283: * Q@inheritdoc IManageableVault

284 : x/

285: function setMinAmount(uint256 newAmount) external onlyVaultAdmin {
286: minAmount = newAmount;

287: emit SetMinAmount (msg.sender, newAmount) ;

288: }

File: DepositVault.sol

657 : if (!isFreeFromMinAmount [userCopyl) {
658: _validateMinAmount (userCopy, result.mintAmount) ;
659: }

File: RedemptionVault.sol

756: if (!isFreeFromMinAmount [user]) {

757 : uint256 minRedeemAmount = isFiat 7 minFiatRedeemAmount : minAmount;
758: require (minRedeemAmount <= amountMTokenIn, "RV: amount < min");
759: }

However, it may be possible that Midas set the minAmount to non-zero in the future.
Often, this measure is enabled to guard against dust/small deposits and redemption,
which might overwhelm the operation.

The following attempts to assess the impact if this minAmount increases to non-zero in the
future:

1. Increasing minAmount later can retroactively brick a small Notional position. Some
small positions may not be withdrawn if their size is below Midas's minAmount. This
applies to both WithdrawRequest initiation and Instant redemption. Note that
even if the user's positions are large in the first place, they might still become

<5/

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/22
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/22

dust/small due to partial liquidation, partial redemption, partial repayment, and
fee charged by Notional via decaying effective yield token etc.

2. The deposit will revert, but the impact is not too serious, as users can always retry
with a larger deposit.

3. Liquidator might perform partial liquidation, and receive a withdraw request whose
position size is small. In this case, they might not be able to redeem the withdraw
request.

Impact

Redemption and deposit might revert if the position size is small/dust.

Code Snippet

https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd7
04d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L45

https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649
dadbebé49614bf53c8/src/withdraws/Midas.sol#L91

https://github.com/notional-finance/notional-exponent/blob/adb8c25lefef419e316649
dadbebé49614bf53c8/src/withdraws/Midas.sol#L72

Tool Used

Manual Review

Recommendation

If possible, consider asking Midas to exempt Notional from the minimum amount
restriction since Midas's vault admin can add Notional contracts into the isFreeFromMinA
mount mapping of their vaults to bypass any minimum amount checks. Note that both
Notional's MidasWithdrawRequestManager and MidasStakingStrategy contracts need to be
whitelisted.

Otherwise, more engineering efforts will be required, and more complex solutions will be
needed to address the three impacts mentioned earlier in the report.

Discussion

T-Woodward
Noted. Will ask Midas to add us to the mapping

38

https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd704d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L45
https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd704d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L45
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L91
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L91
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L72
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L72

Disclaimers

Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the users’
responsibility.

&

	Introduction
	Scope
	Final Commit Hash

	Findings
	Issues Found
	Issues Not Fixed and Not Acknowledged

	Issue M-1: Valuation of withdraw request can be improved [ACKNOWLEDGED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-1: Potential pitfalls due to counterintuitive minReceiveAmount on the Midas vaults [ACKNOWLEDGED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation

	Issue L-2: Residual allowance after redeemInstant is executed [RESOLVED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation

	Issue L-3: Subtracting 1 from tokensClaimed is unnecessary [ACKNOWLEDGED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-4: Incorrect updatedAt returned from MidasUSDOracle [RESOLVED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation

	Issue L-5: Hardcoded USDC/USD oracle address [RESOLVED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-6: TradingModule.getOraclePrice(mHYPER, XXXXX) will not work as intended [ACKNOWLEDGED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation

	Issue L-7: Decimal precision of the rate returned from the MidasWithdrawRequestManager.getExchangeRate() function deviates from other WRMs
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-8: Handling of cancelled redeem request [ACKNOWLEDGED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-9: Midas operational limits can block deposit and redemption [ACKNOWLEDGED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-10: Decoding will revert if asset != staking token [RESOLVED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-11: Hardcoded MidasAccessControl and MIDAS_GREENLISTED_ROLE [RESOLVED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-12: Midas blacklist and sanction [RESOLVED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-13: minAmount feature of Midas's DepositVault and RedemptionVault [ACKNOWLEDGED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Disclaimers

