
/burl@stx null def /BU.S /burl@stx null def def /BU.SS currentpoint /burl@lly exch def /burl@llx exch def burl@stx null ne burl@endx burl@llx ne BU.FL BU.S if if burl@stx null eq burl@llx dup /burl@stx exch def /burl@endx exch def burl@lly dup /burl@boty exch def /burl@topy exch def if burl@lly burl@boty gt /burl@boty burl@lly def if def /BU.SE currentpoint /burl@ury exch def dup /burl@urx exch def /burl@endx exch def burl@ury burl@topy lt /burl@topy burl@ury def if def /BU.E BU.FL def /BU.FL burl@stx null ne BU.DF if def /BU.DF BU.BB [/H /I /Border [burl@border] /Color [burl@bordercolor] /Action « /Subtype /URI /URI BU.L » /Subtype /Link BU.B /ANN pdfmark /burl@stx null def def /BU.BB burl@stx HyperBorder sub /burl@stx exch def burl@endx HyperBorder add /burl@endx exch def burl@boty HyperBorder add /burl@boty exch def burl@topy HyperBorder sub /burl@topy exch def def /BU.B /Rect[burl@stx burl@boty burl@endx burl@topy] def /eop where begin /@ldeopburl /eop load def /eop SDict begin BU.FL end @ldeopburl def end /eop SDict begin BU.FL end def ifelse

Security Review For
Notional

Collaborative Audit Prepared For: Notional
Lead Security Expert(s): xiaoming90
Date Audited: January 7 - January 9, 2026

1

https://github.com/xiaoming9090

Introduction
TBA

Scope
Repository: notional-finance/notional-v4

Audited Commit: 86b597c0ecfb9ddcd22c07f8e2e20b69a07f83ef

Final Commit: 9f5e91e4bd3bdf0edb659e856e1c657190c6f738

Files:

• src/interfaces/IMidas.sol

• src/oracles/MidasUSDOracle.sol

• src/proxy/AddressRegistry.sol

• src/staking/AbstractStakingStrategy.sol

• src/staking/MidasStakingStrategy.sol

• src/staking/PendlePT.sol

• src/staking/PendlePT_sUSDe.sol

• src/withdraws/Midas.sol

Final Commit Hash
9f5e91e4bd3bdf0edb659e856e1c657190c6f738

Findings
Each issue has an assigned severity:

• High issues are directly exploitable security vulnerabilities that need to be fixed.

• Medium issues are security vulnerabilities that may not be directly exploitable or
may require certain conditions in order to be exploited. All major issues should be
addressed.

• Low/Info issues are non-exploitable, informational findings that do not pose a
security risk or impact the system’s integrity. These issues are typically cosmetic or
related to compliance requirements, and are not considered a priority for
remediation.

2

https://github.com/notional-finance/notional-v4/tree/9f5e91e4bd3bdf0edb659e856e1c657190c6f738

Issues Found

High Medium Low/Info

0 1 13

Issues Not Fixed and Not Acknowledged

High Medium Low/Info

0 0 0

3

IssueM-1: Valuation of withdraw request can be im-
proved [ACKNOWLEDGED]
Source: https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/
issues/16

This issue has been acknowledged by the team but won't be fixed at this time.

Vulnerability Detail
When Midas's withdraw request (WR) has not been finalized yet, the protocol will price
the pending WR via the getKnownWithdrawTokenAmount() function below. If the Strategy
Vault's asset is USDC, the function will return the price of the pending WR in USDC terms.

It was observed that the function uses request.mTokenRate, which was set when the
redemption request is submitted, to compute the value.

119: function getKnownWithdrawTokenAmount(uint256 requestId)
120: public
121: view
122: override
123: returns (bool hasKnownAmount, uint256 amount)
124: {
125: IRedemptionVault.Request memory request =

redeemVault.redeemRequests(requestId);↪→

126: uint256 tokenDecimals = TokenUtils.getDecimals(WITHDRAW_TOKEN);
127:
128: // NOTE: it is possible that the mTokenRate moves a bit but this will

be used↪→

129: // to value the withdraw request when it is pending.
130: hasKnownAmount = true;
131: // The request.mTokenRate will be updated when the request is

processed to the final rate.↪→

132: amount = _truncate((request.amountMToken * request.mTokenRate) /
request.tokenOutRate, tokenDecimals);↪→

133: // Midas vaults return the amount in 18 decimals but we need to
convert to the native↪→

134: // token decimals here.
135: amount = (amount * 10 ** tokenDecimals) / 1e18 - 1;
136: }

Assume that it takes 3 days for Midas side to process a redemption request. Strategy
Vault's asset is USDC, and 1 USDC = 1 USD hardcoded.

1. On Day 1, the price of mHYPER/USD is 1.06. A withdraw/redeem request is created,
the request.mTokenRate is locked at 1.06.

2. On Day 2, the price of mHYPER/USD falls to 0.70 as one of its underlying

4

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/16
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/16

assets/investments suffers a significant loss.

3. On Day 3, the Midas's vault admin will approve the request via the following
function. Based on the mToken rate passed in by the admin, the converted USDC
will be transferred to WRM.

Note that the rate is determined by Midas's vault admin, and determine if approveR
equest or safeApproveRequest is called.

File: RedemptionVault.sol
457: * @param requestId request id
458: * @param newMTokenRate new mToken rate
459: * @param isSafe new mToken rate
460: * @param safeValidateLiquidity if true, checks if there is enough

liquidity↪→

461: * and if its not sufficient, function wont fail
462: *
463: * @return success true if success, false only in case if
464: * safeValidateLiquidity == true and there is not enough liquidity
465: */
466: function _approveRequest(
467: uint256 requestId,
468: uint256 newMTokenRate,
469: bool isSafe,
470: bool safeValidateLiquidity
471:)
472: internal
473: returns (
474: bool /* success */
475:)
476: {

The issue is that when the price falls to 0.70, the WR is still calculated using the old rate
of 1.06, which overinflated it. When the actual price falls to 0.70 on Day 2, it is more likely
that on Day 3, the redeem request will be processed with a new mToken rate closer to the
actual price of 0.70 rather than 1.06, unless Midas is willing to absorb the loss.

On the other hand, if the price of mToken increases significantly during a short period of
time, the WR will be undervalued.

Impact
The WR will be overvalued or undervalued.

Code Snippet
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649
dadbeb649614bf53c8/src/withdraws/Midas.sol#L119

5

https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L119
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L119

Tool Used
Manual Review

Recommendation
There is no reliable method to determine the actual newMTokenRate that Midas's vault
admin will pass into the _approveRequest() function to process the redeem request. Thus,
determining the mToken rate when the request is pending is a best-effort activity, since
no one can predict what value the vault admin will submit on-chain later.

On Midas side, it exposes a mToken/USD price oracle (IMidasDataFeed(midasVault_.mToke
nDataFeed()).aggregator()). Assume that the Midas price oracle accurately reflects the
mToken's actual value. In this case, during a significant price swing, it is more likely that
the final newMTokenRate used by the vault admin will be a value somewhere close to the
rate returned by the mToken/USD price oracle rather than the old/stale rate locked when
the redeem request is submitted. The mToken/USD feed will provide a value more closely
aligned with the current NAV.

Discussion
T-Woodward

I'm not sure about this one. Like you said, you don't actually know what mTokenRate the
request will be processed at.

From my conversations with them, their treatment varies by vault. On most vaults they
will use the mTokenRate at the time of processing to pay you out, but on some vaults like
mF-ONE they say that they'll pay you out as of the mTokenRate you snapped at the time
of request.

From a risk standpoint I'm not sure if it really matters how we mark it. The account is
frozen at this point in time anyway. I suppose that the mark could affect whether
liquidations occur, but given that the account is already in the withdraw queue, it is likely
that any liquidator would just let the withdraw finalize first before liquidating anyway.

So I would argue that what we do here should primarily be concerned with UX and what
number makes most sense to show on the UI to the user. We could I suppose have two
versions of this WRM, one where we use the current mTokenRate and one where we use
the old one and deploy a different according to the vault. I don't know, what do you
think Jeff?

jeffywu

Well there is a lot of uncertainty around how this might be handled since the admin has
four ways to finalize the request:

/**
* @notice approving requests from the `requestIds` array with the

6

* current mToken rate. WONT fail even if there is not enough liquidity
* to process all requests.
* Does same validation as `safeApproveRequest`.
* Transfers tokenOut to users
* Sets request flags to Processed.
* @param requestIds request ids array
*/

function safeBulkApproveRequest(uint256[] calldata requestIds) external;

/**
* @notice approving requests from the `requestIds` array using the

`newMTokenRate`.↪→

* WONT fail even if there is not enough liquidity to process all requests.
* Does same validation as `safeApproveRequest`.
* Transfers tokenOut to user
* Sets request flags to Processed.
* @param requestIds request ids array
* @param newMTokenRate new mToken rate inputted by vault admin
*/

function safeBulkApproveRequest(
uint256[] calldata requestIds,
uint256 newMTokenRate

) external;

/**
* @notice approving redeem request if not exceed tokenOut allowance
* Burns amount mToken from contract
* Transfers tokenOut to user
* Sets flag Processed
* @param requestId request id
* @param newMTokenRate new mToken rate inputted by vault admin
*/

function approveRequest(uint256 requestId, uint256 newMTokenRate) external;

/**
* @notice approving request if inputted token rate fit price diviation percent
* Burns amount mToken from contract
* Transfers tokenOut to user
* Sets flag Processed
* @param requestId request id
* @param newMTokenRate new mToken rate inputted by vault admin
*/

function safeApproveRequest(uint256 requestId, uint256 newMTokenRate)
external;

The ”safe” version restricts the change in the mTokenRate and the ”unsafe” version
allows them to set any rate they want.

In the scenario outlined in this issue, it's not clear how the requests would finalize. If we
pre-maturely mark the requests down to the oracle rate, then someone could front run

7

the user by watching the mempool and liquidating the account right before they
actually finalize the withdraw request at a higher valuation. I feel like it would be most
fair to allow the request to finalize at a valuation and then proceed with a liquidation.

8

Issue L-1: Potential pitfalls due to counterintuitive
minReceiveAmount on the Midas vaults [ACKNOWL-
EDGED]
Source:
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/9

This issue has been acknowledged by the team but won't be fixed at this time.

Vulnerability Detail
The Midas redemption vault expects the minReceiveAmount to be in 18 decimal precision.
Thus, if users want to receive 100 USDC, they must set the minReceiveAmount to be 100e18
instead of 100e6, which is counterintuitive and a potential pitfall.

File: MidasStakingStrategy.sol
24: function _executeInstantRedemption(
..SNIP..
44: ERC20(yieldToken).checkApprove(address(redeemVault),

yieldTokensToRedeem);↪→

45: redeemVault.redeemInstant(address(asset), yieldTokensToRedeem,
minReceiveAmount);↪→

..SNIP..

File: IRedemptionVault.sol
146: * @param tokenOut stable coin token address to redeem to
147: * @param amountMTokenIn amount of mToken to redeem (decimals 18)
148: * @param minReceiveAmount minimum expected amount of tokenOut to receive

(decimals 18)↪→

149: */
150: function redeemInstant(
151: address tokenOut,
152: uint256 amountMTokenIn,
153: uint256 minReceiveAmount
154:) external;

Similarly, the Midas deposit vault expects the minReceiveAmount to be in 18 decimal
precision regardless of the native token decimals.

File: Midas.sol
60: function _stakeTokens(uint256 amount, bytes memory stakeData) internal

override {↪→

..SNIP..
70: // Midas requires the amount to be in 18 decimals regardless of the

native token decimals.↪→

9

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/9

71: uint256 scaledAmount = amount * 1e18 / (10 **
TokenUtils.getDecimals(STAKING_TOKEN));↪→

72: depositVault.depositInstant(STAKING_TOKEN, scaledAmount,
minReceiveAmount, i_referrerId);↪→

73: }

File: IDepositVault.sol
157: * @param tokenIn address of tokenIn
158: * @param amountToken amount of `tokenIn` that will be taken from user

(decimals 18)↪→

159: * @param minReceiveAmount minimum expected amount of mToken to receive
(decimals 18)↪→

160: * @param referrerId referrer id
161: */
162: function depositInstant(
163: address tokenIn,
164: uint256 amountToken,
165: uint256 minReceiveAmount,
166: bytes32 referrerId
167:) external;

Impact
Users might configure the minimum expected amount in the wrong decimals.

Code Snippet
https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd7
04d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L45

https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649
dadbeb649614bf53c8/src/withdraws/Midas.sol#L72

Tool Used
Manual Review

Recommendation
Consider documenting clearly that the minReceiveAmount for Midas related function
must be in 18 decimals.

10

https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd704d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L45
https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd704d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L45
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L72
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L72

Issue L-2: Residual allowanceafter redeemInstant is
executed [RESOLVED]
Source: https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/
issues/10

Vulnerability Detail
Assume that the caller wants to redeem 100 mToken (Yield Token). In this case, Line 44
will grant 100 mToken allowance to the redeemVault. If the fee is 0.5%, Midas will charge
0.5 mToken, and the remaining 99.5 mToken will be converted to USDC.

File: MidasStakingStrategy.sol
24: function _executeInstantRedemption(
25: address sharesOwner,
26: uint256 yieldTokensToRedeem,
27: bytes memory redeemData
28:)
..SNIP..
41: uint256 assetsBefore = TokenUtils.tokenBalance(asset);
42: (uint256 minReceiveAmount) = abi.decode(redeemData, (uint256));
43:
44: ERC20(yieldToken).checkApprove(address(redeemVault),

yieldTokensToRedeem);↪→

45: redeemVault.redeemInstant(address(asset), yieldTokensToRedeem,
minReceiveAmount);↪→

The following is taken from the Midas redemption vault's source code. Within the _redeem
Instant() function, 99.5 mToken will be burned. However, when mToken is burned, the
allowance is not consumed. Thus, when MidasStakingStrategy grants 100 mToken
allowance to the redemption vault, only 0.5 mToken will be consumed, and there will be a
residual allowance of 99.5 mToken.

File: RedemptionVault.sol
551: function _redeemInstant(
..SNIP..
599: mToken.burn(user, calcResult.amountMTokenWithoutFee);
600: if (calcResult.feeAmount > 0)
601: _tokenTransferFromUser(
602: address(mToken),
603: feeReceiver,
604: calcResult.feeAmount,
605: 18
606:);

The following is a simple test script to demonstrate this:

11

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/10
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/10

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

import "forge-std/Test.sol";
import "forge-std/console2.sol";

interface IERC20 {
function approve(address spender, uint256 amount) external returns (bool);
function allowance(address owner, address spender) external view returns

(uint256);↪→

function balanceOf(address) external view returns (uint256);
}

interface IRedeemVault {
// no return value
function redeemInstant(address tokenOut, uint256 amountMTokenIn, uint256

minReceiveAmount) external;↪→

}

contract RedeemInstantAllowanceTest is Test {
address constant MHYPER = 0x9b5528528656DBC094765E2abB79F293c21191B9;
address constant REDEEM_VAULT = 0x6Be2f55816efd0d91f52720f096006d63c366e98;
address constant USDC = 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48;

address bob;

function setUp() public {
vm.createSelectFork(vm.rpcUrl("mainnet"));
bob = makeAddr("bob");

}

function test_redeemInstant_printResidualAllowance() public {
uint256 amountIn = 100e18;

deal(MHYPER, bob, amountIn, true);

vm.prank(bob);
IERC20(MHYPER).approve(REDEEM_VAULT, amountIn);

uint256 usdcBefore = IERC20(USDC).balanceOf(bob);

vm.prank(bob);
IRedeemVault(REDEEM_VAULT).redeemInstant(USDC, amountIn, 0);

uint256 usdcAfter = IERC20(USDC).balanceOf(bob);
uint256 usdcOut = usdcAfter - usdcBefore;

console2.log("Bob USDC received:", usdcOut);

12

console2.log("Residual mHYPER allowance:", IERC20(MHYPER).allowance(bob,
REDEEM_VAULT));↪→

}
}

Ran 1 test for test/RedeemInstantAllowance.t.sol:RedeemInstantAllowanceTest
[PASS] test_redeemInstant_printResidualAllowance() (gas: 561198)
Logs:
Bob USDC received: 106254523
Residual mHYPER allowance: 99500000000000000000

Impact
Residual allowance will remain even after the redemption operation.

Code Snippet
https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd7
04d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L45

Tool Used
Manual Review

Recommendation
Consider explicitly resetting the allowance back to zero immediately after the redeemVau
lt.redeemInstant() function is executed. Alternatively, consider only granting the fee
amount (e.g., 0.5 mToken in this scenario), but this solution is more engineering efforts.

13

https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd704d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L45
https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd704d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L45

Issue L-3: Subtracting 1 from tokensClaimed is un-
necessary [ACKNOWLEDGED]
Source:
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/11

This issue has been acknowledged by the team but won't be fixed at this time.

Vulnerability Detail
It is unnecessary to subtract 1 unit in Line 111 below because the tokensClaimed
calculation below follows the approach done within the Midas vaults, except for the -1.

File: Midas.sol
094: function _finalizeWithdrawImpl(
095: address, /* account */
096: uint256 requestId
097:)
098: internal
099: override
100: returns (uint256 tokensClaimed)
101: {
102: IRedemptionVault.Request memory request =

redeemVault.redeemRequests(requestId);↪→

103: require(request.status == MidasRequestStatus.Processed);
104: uint256 tokenDecimals = TokenUtils.getDecimals(WITHDRAW_TOKEN);
105:
106: // Once the request is processed, the tokens are transferred to this

contract so we calculate the↪→

107: // amount of tokens claimed and return it. This is not ideal since we
don't pull the tokens but it↪→

108: // is how the Midas vault works.
109: tokensClaimed = _truncate((request.amountMToken * request.mTokenRate)

/ request.tokenOutRate, tokenDecimals);↪→

110: // Convert to the native token decimals, subtract 1 unit to account
for any rounding errors.↪→

111: tokensClaimed = (tokensClaimed * 10 ** tokenDecimals) / 1e18 - 1;
112: }

The _truncate in Line 109 within the _finalizeWithdrawImpl() function is exactly what is
done within the RedemptionVault._approveRequest() function. So, this part is fine. The to
kensClaimed after _truncate is guaranteed to be a multiple of 10̂(18-tokenDecimals) (for
tokenDecimals < 18).

Let's review the second part, which converts 18 decimals to native token decimals in Line
111 within the _finalizeWithdrawImpl() function.

File: RedemptionVault.sol

14

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/11

466: function _approveRequest(
467: uint256 requestId,
468: uint256 newMTokenRate,
469: bool isSafe,
470: bool safeValidateLiquidity
471:)
..SNIP..
489: uint256 amountTokenOutWithoutFee = _truncate(
490: (request.amountMToken * newMTokenRate) / request.tokenOutRate,
491: tokenDecimals
492:);
..SNIP..
506: _tokenTransferFromTo(
507: request.tokenOut,
508: requestRedeemer,
509: request.sender,
510: amountTokenOutWithoutFee,
511: tokenDecimals
512:);
..SNIP..
519: request.status = RequestStatus.Processed;
520: request.mTokenRate = newMTokenRate;
521: redeemRequests[requestId] = request;

Within the Midas redemption vault, the conversion is done within the DecimalsCorrection
Library.convertFromBase18() -> DecimalsCorrectionLibrary.convert() function.

File: ManageableVault.sol
441: function _tokenTransferFromTo(
442: address token,
443: address from,
444: address to,
445: uint256 amount,
446: uint256 tokenDecimals
447:) internal {
448: uint256 transferAmount = amount.convertFromBase18(tokenDecimals);
..SNIP..
455: IERC20(token).safeTransferFrom(from, to, transferAmount);
456: }

File: DecimalsCorrectionLibrary.sol
18: function convert(
19: uint256 originalAmount,
20: uint256 originalDecimals, // @audit-info 18
21: uint256 decidedDecimals // @audit-info 6
22:) internal pure returns (uint256) {
23: if (originalAmount == 0) return 0;
24: if (originalDecimals == decidedDecimals) return originalAmount;
25:

15

26: uint256 adjustedAmount;
27:
28: if (originalDecimals > decidedDecimals) {
29: adjustedAmount =
30: originalAmount /
31: (10**(originalDecimals - decidedDecimals));
32: } else {

Notional uses:

(tokensClaimed * 10 ** tokenDecimals) / 1e18

Which is exactly the same as:

tokensClaimed.convertFromBase18(tokenDecimals)

So without -1, Notional would return exactly the number of tokens Midas transferred to
the WRM.

In addition, -1 introduced a small risk of revert due to underflow. If tokensClaimed is small,
the numerator will round down to 0, and subtracting 1 will cause an underflow and revert.

tokensClaimed = (tokensClaimed * 10 ** tokenDecimals) / 1e18 - 1;

The same issue applies to the MidasWithdrawRequestManager.getKnownWithdrawTokenAmou
nt() function.

Impact
There is a risk of revert and underflow for small requests, and requests are slightly
understated by 1 wei.

Code Snippet
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649
dadbeb649614bf53c8/src/withdraws/Midas.sol#L111

https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649
dadbeb649614bf53c8/src/withdraws/Midas.sol#L135

Tool Used
Manual Review

16

https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L111
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L111
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L135
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L135

Recommendation
Consider removing the -1.

- tokensClaimed = (tokensClaimed * 10 ** tokenDecimals) / 1e18 - 1;
+ tokensClaimed = (tokensClaimed * 10 ** tokenDecimals) / 1e18;

Since the DecimalsCorrectionLibrary, which Midas uses, is already imported into the
protocol, it is also recommended to use the same library function to ensure 100%
alignment.

- tokensClaimed = (tokensClaimed * 10 ** tokenDecimals) / 1e18;
+ tokensClaimed = tokensClaimed.convertFromBase18(tokenDecimals);

In this case, the computed tokensClaimed will match exactly the amount of tokens Midas
transferred to the WRM, and there is no ambiguity.

Discussion
jeffywu

Confirmed, however, I'd prefer to just keep it as is. I think leaving a bit of dust back will
not have any harm.

17

Issue L-4: Incorrect updatedAt returned from Midas
USDOracle [RESOLVED]
Source: https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/
issues/12

Vulnerability Detail
Within the MidasUSDOracle._calculateBaseToQuote(), the price returned uses ”answer”
from both:

1. midasOracle (mHYPER/USD)

2. usdcToUSDOracle (USDC/USD)

However, it was observed that the updatedAt returned by this function only depends on
the updatedAt returned by the midasOracle.

Assume that the midasOracle.updatedAt is very recent (passes freshness checks), but usdc
ToUSDOracle is stale (not updated for a long time). In this case, the oracle still returns the
price with the more recent timestamp.

File: MidasUSDOracle.sol
27: function _calculateBaseToQuote()
28: internal
29: view
30: override
31: returns (uint80 roundId, int256 answer, uint256 startedAt, uint256

updatedAt, uint80 answeredInRound)↪→

32: {
33: int256 mTokenRate;
34: (roundId, mTokenRate, startedAt, updatedAt, answeredInRound) =

midasOracle.latestRoundData();↪→

35: // Offset the USDC/USD rate to ensure that the USDC/USD rate is
hardcoded to 1 in the trading↪→

36: // module. In the vaults we request the mToken/USDC rate so we want to
offset any USDC variations here.↪→

37: int256 usdcToUSD;
38: (, usdcToUSD,,,) = usdcToUSDOracle.latestRoundData();
39: require(usdcToUSD > 0 && mTokenRate > 0, "Chainlink Rate Error");
40: answer = (mTokenRate * usdcToUSD * 1e18) / (usdcToUSDDecimals *

midasDecimals);↪→

41: }

When the TradingModule.getOraclePrice() performs a stale price check here, it will
wrongly assume that the price is fresh, while in reality it is not because one of its factors
(USDC/USD) is stale.

18

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/12
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/12
https://github.com/notional-finance/leveraged-vaults/blob/7e0abc3e118db0abb20c7521c6f53f1762fdf562/contracts/trading/TradingModule.sol#L275

Impact
Incorrect updatedAt is being returned, preventing the downstreammodule from
detecting a stale price.

Code Snippet
https://github.com/notional-finance/notional-exponent/blob/86b597c0ecfb9ddcd22c
07f8e2e20b69a07f83ef/src/oracles/MidasUSDOracle.sol#L27

Tool Used
Manual Review

Recommendation
Consider setting updatedAt to the oldest timestamp from both answers. For instance, upd
atedAt = min(updatedAt_midas, updatedAt_usdc).

19

https://github.com/notional-finance/notional-exponent/blob/86b597c0ecfb9ddcd22c07f8e2e20b69a07f83ef/src/oracles/MidasUSDOracle.sol#L27
https://github.com/notional-finance/notional-exponent/blob/86b597c0ecfb9ddcd22c07f8e2e20b69a07f83ef/src/oracles/MidasUSDOracle.sol#L27

IssueL-5: HardcodedUSDC/USDoracleaddress [RE-
SOLVED]
Source: https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/
issues/13

Vulnerability Detail
The MidasUSDOracle oracle return (mHYPER/USD * USDC/USD) rate in 18 decimals. Note:
mHYPER/USD => base/quote in this report.

File: MidasUSDOracle.sol
11: contract MidasUSDOracle is AbstractCustomOracle {
..SNIP..
27: function _calculateBaseToQuote()
..SNIP..

32: {
33: int256 mTokenRate;
34: (roundId, mTokenRate, startedAt, updatedAt, answeredInRound) =

midasOracle.latestRoundData();↪→

35: // Offset the USDC/USD rate to ensure that the USDC/USD rate is
hardcoded to 1 in the trading↪→

36: // module. In the vaults we request the mToken/USDC rate so we want to
offset any USDC variations here.↪→

37: int256 usdcToUSD;
38: (, usdcToUSD,,,) = usdcToUSDOracle.latestRoundData();
39: require(usdcToUSD > 0 && mTokenRate > 0, "Chainlink Rate Error");
40: answer = (mTokenRate * usdcToUSD * 1e18) / (usdcToUSDDecimals *

midasDecimals);↪→

41: }
42: }
43:

This value is used within the TradingModule.getOraclePrice(baseToken=mHYPER, quoteTok
en=USDC). Note that the USDC/USD will cancel off and be equal to one in the formula.

answer = [(mHYPER/USD * USDC/USD * 1e18) * 1e18 * 1e18] / [(USDC/USD * 1e18) *
1e18)]↪→

answer = mHYPER/USD * 1e18 (hardcoded 1 USDC = 1 USD)

https://github.com/notional-finance/leveraged-vaults/blob/7e0abc3e118db0abb20c75
21c6f53f1762fdf562/contracts/trading/TradingModule.sol#L284

function getOraclePrice(address baseToken, address quoteToken)
..SNIP..

answer =
(basePrice * quoteDecimals * RATE_DECIMALS) /

20

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/13
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/13
https://github.com/notional-finance/leveraged-vaults/blob/7e0abc3e118db0abb20c7521c6f53f1762fdf562/contracts/trading/TradingModule.sol#L284
https://github.com/notional-finance/leveraged-vaults/blob/7e0abc3e118db0abb20c7521c6f53f1762fdf562/contracts/trading/TradingModule.sol#L284

(quotePrice * baseDecimals);
decimals = RATE_DECIMALS;

}

So when fetching the price of mHYPER/USDC via the TradingModule.getOraclePrice()
function, it assumes that 1 USDC is always equal to 1 USD. For this to work, the USDC/USD
price oracle used by the MidasUSDOracle and TradingModule must be the same.
Otherwise, the math will not work.

However, it was observed that the USDC/USD oracle is hardcoded to 0x8fFfFfd4AfB6115
b954Bd326cbe7B4BA576818f6 within the MidasUSDOracle. Thus, if the USDC/USD oracle in
the TradingModule gets updated to another price oracle, the price returned from Trading
Module.getOraclePrice(baseToken=mHYPER, quoteToken=USDC) will be invalid.

File: MidasUSDOracle.sol
11: contract MidasUSDOracle is AbstractCustomOracle {
12: using TypeConvert for uint256;
13:
14: AggregatorV2V3Interface public constant usdcToUSDOracle =
15: AggregatorV2V3Interface(0x8fFfFfd4AfB6115b954Bd326cbe7B4BA576818f6);
16: AggregatorV2V3Interface public immutable midasOracle;
17: int256 public immutable usdcToUSDDecimals;
18: int256 public immutable midasDecimals;
19:
20: constructor(string memory description_, IMidasVault midasVault_)

AbstractCustomOracle(description_, address(0)) {↪→

21: require(block.chainid == CHAIN_ID_MAINNET);
22: usdcToUSDDecimals = int256(10 ** usdcToUSDOracle.decimals());
23: midasOracle = AggregatorV2V3Interface(IMidasDataFeed(midasVault_.mToken ⌋

DataFeed()).aggregator());mHYPER/USD oracle↪→

24: midasDecimals = int256(10 ** midasOracle.decimals());
25: }

Impact
The price returned by TradingModule.getOraclePrice(baseToken=mHYPER, quoteToken=USD
C) might be invalid if the USDC/USD price oracle is updated.

Code Snippet
https://github.com/notional-finance/notional-exponent/blob/86b597c0ecfb9ddcd22c
07f8e2e20b69a07f83ef/src/oracles/MidasUSDOracle.sol#L15

Tool Used
Manual Review

21

https://github.com/notional-finance/notional-exponent/blob/86b597c0ecfb9ddcd22c07f8e2e20b69a07f83ef/src/oracles/MidasUSDOracle.sol#L15
https://github.com/notional-finance/notional-exponent/blob/86b597c0ecfb9ddcd22c07f8e2e20b69a07f83ef/src/oracles/MidasUSDOracle.sol#L15

Recommendation
Instead of hardcoding the USDC/USD in the MidasUSDOracle, consider fetching the
USDC/USD oracle address from TradingModule's priceOracles[USDC].oracle.

Discussion
T-Woodward

Noted

22

Issue L-6: TradingModule.getOraclePrice(mHYPER,
XXXXX)will notworkas intended [ACKNOWLEDGED]
Source: https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/
issues/14

This issue has been acknowledged by the team but won't be fixed at this time.

Vulnerability Detail
Based on the name of the oracle (MidasUSDOracle), one might assume that this oracle
returns the price of mHYPER/USD. However, the oracle returns the price of
(mHYPER/USD * USDC/USD). Note: mHYPER/USD => base/quote in this report.

However, if one executes TradingModule.getOraclePrice(mHYPER, WETH), it will not return
the price of mHYPER/WETH. Instead, it will return the price of (mHYPER/WETH *
USDC/USD).

Impact
If the protocol intends to support a pair with mHYPER and non-USDC tokens, using Midas
USDOracle directly within the TradingModule.getOraclePrice() will not return the correct
price.

Code Snippet
https://github.com/notional-finance/notional-exponent/blob/86b597c0ecfb9ddcd22c
07f8e2e20b69a07f83ef/src/oracles/MidasUSDOracle.sol#L11

Tool Used
Manual Review

Recommendation
Be aware of this pitfall, and consider documenting this.

23

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/14
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/14
https://github.com/notional-finance/notional-exponent/blob/86b597c0ecfb9ddcd22c07f8e2e20b69a07f83ef/src/oracles/MidasUSDOracle.sol#L11
https://github.com/notional-finance/notional-exponent/blob/86b597c0ecfb9ddcd22c07f8e2e20b69a07f83ef/src/oracles/MidasUSDOracle.sol#L11

IssueL-7: Decimalprecisionof the rate returnedfrom
theMidasWithdrawRequestManager.getExchangeRate
() function deviates from other WRMs
Source: https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/
issues/15

Vulnerability Detail
All other WithdrawRequestManager's getExchangeRate() returns the exchange rate in
Native precision. However, the MidasWithdrawRequestManager.getExchangeRate()
function returns the exchange rate in 18 decimals, although the underlying asset is USDC
denominated in 6 decimals precision.

File: Midas.sol
143: function getExchangeRate() public view override returns (uint256 rate) {
144: IMidasVault.TokenConfig memory tokenConfig =

redeemVault.tokensConfig(WITHDRAW_TOKEN);↪→

145: rate = IMidasDataFeed(redeemVault.mTokenDataFeed()).getDataInBase18();
146: if (!tokenConfig.stable) {
147: uint256 tokenRate =

IMidasDataFeed(tokenConfig.dataFeed).getDataInBase18();↪→

148: rate = 1e18 * rate / tokenRate;
149: }
150: }

Impact
Anyone who relies on WithdrawRequestManager's getExchangeRate() might receive
results with inconsistent decimal precision.

Code Snippet
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649
dadbeb649614bf53c8/src/withdraws/Midas.sol#L143

Tool Used
Manual Review

24

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/15
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/15
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L143
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L143

Recommendation
Ensure that the rate returned from all WithdrawRequestManager's getExchangeRate()
follows a consistent decimal precision. Consider using convertFromBase18(tokenDecimals
) to convert the rate in 18 decimals back to native precision.

Discussion
jeffywu

Will Fix

25

IssueL-8: Handlingofcancelled redeemrequest [AC-
KNOWLEDGED]
Source: https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/
issues/17

This issue has been acknowledged by the team but won't be fixed at this time.

Vulnerability Detail
Per Midas's redemption vault code, it is possible for a vault admin to cancel a redeem
request.

File: RedemptionVault.sol
359: function rejectRequest(uint256 requestId) external onlyVaultAdmin {
360: Request memory request = redeemRequests[requestId];
361:
362: _validateRequest(request.sender, request.status);
363:
364: redeemRequests[requestId].status = RequestStatus.Canceled;
365:
366: emit RejectRequest(requestId, request.sender);
367: }

Consider a scenario where a redeem request is cancelled, and its side-effect/impact on
the existing withdraw requests (WR)

1. Within the protocol, the getKnownWithdrawTokenAmount() function will continue to
treat it as pending and still return a positive value even if it is likely that a cancel
request will not be paid out. If that is the case, the WR will be overvalued.

2. During redemption, the mToken was transferred into the redemption vault when the
request was created. When a request is cancelled, Midas does not automatically
refund the mToken that was not processed, and will mark the request's status to Can
celed. Since Notional will only consider the WR to be processed if request.status =
= MidasRequestStatus.Processed, the finalization will always fail, and the WR will
remain stuck.

Note. Once Midas cancels a redeem request, the admin cannot execute the _approveReq
uest() function to process the redeem request anymore. So, the change in the redeem
request's status is final.

119: function getKnownWithdrawTokenAmount(uint256 requestId)
120: public
121: view
122: override
123: returns (bool hasKnownAmount, uint256 amount)
124: {

26

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/17
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/17

125: IRedemptionVault.Request memory request =
redeemVault.redeemRequests(requestId);↪→

126: uint256 tokenDecimals = TokenUtils.getDecimals(WITHDRAW_TOKEN);
127:
128: // NOTE: it is possible that the mTokenRate moves a bit but this will

be used↪→

129: // to value the withdraw request when it is pending.
130: hasKnownAmount = true;
131: // The request.mTokenRate will be updated when the request is

processed to the final rate.↪→

132: amount = _truncate((request.amountMToken * request.mTokenRate) /
request.tokenOutRate, tokenDecimals);↪→

133: // Midas vaults return the amount in 18 decimals but we need to
convert to the native↪→

134: // token decimals here.
135: amount = (amount * 10 ** tokenDecimals) / 1e18 - 1;
136: }

Impact
When a redeem request is cancelled, the WR might be overvalued, and the WR remains
stuck.

Code Snippet
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649
dadbeb649614bf53c8/src/withdraws/Midas.sol#L119

Tool Used
Manual Review

Recommendation
Consider the edge case above and whether additional processing is needed to handle
these scenarios. Check with Midas's protocol team to understand under what conditions
a redeem request would be cancelled, whether a refund will be issued, whether there is
any policy/SLA, and what happens after a cancellation. Their answer will determine how
a cancelled redeem request should be valued and handled.

Discussion
T-Woodward

27

https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L119
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L119

Yeah have done. Basically, they have said that redeem request cancellation should
never happen. In the event that it does, the current behavior is the best we could hope
for - account is frozen and no one will liquidate. At this point we would need to do
something manual and likely would need to upgrade the contract.

I don't think there's really a way to handle this correctly because it's not clear why this
would happen, what it would mean, or what would happen next. Additionally, Midas will
already have the mTokens so we can't just clear the withdraw request. I think if anything,
maybe you add a function that would allow us to change the withdraw request status
from cancelled to processed because that's probably what we would eventually do.
Midas would just send us the tokens and we manually change the request status.

28

IssueL-9: Midasoperational limits canblockdeposit
and redemption [ACKNOWLEDGED]
Source: https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/
issues/18

This issue has been acknowledged by the team but won't be fixed at this time.

Vulnerability Detail
Midas protocol enforces the following limits for its deposit and instant redemption
features:

The deposit function relies on depositInstant() function, which is subject to the
following limit:

1. Instant Daily Limit (_requireAndUpdateLimit) - 20 million mToken at the time of audit

2. Per-token allowance (_requireAndUpdateAllowance) - 116 million USDC at the time of
audit

3. Max supply cap (_validateMaxSupplyCap) - 2̂256-1 at the time of audit

The instant redemption path relies on redeemInstant function, which is subject to the
following limit:

1. Instant Daily Limit (_requireAndUpdateLimit) - 20 million mToken at the time of audit

2. Per-token allowance (_requireAndUpdateAllowance) - 202 million USDC at the time
of audit

Impact
Users will not be able to deposit and perform instant redemption if any of the above
limits are reached

Code Snippet
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649
dadbeb649614bf53c8/src/withdraws/Midas.sol#L72

https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd7
04d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L45

Tool Used
Manual Review

29

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/18
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/18
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L72
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L72
https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd704d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L45
https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd704d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L45

Recommendation
Since the limits are currently set high, it is unlikely that any deposit or redemption will
exceed them. Thus, this is purely informational, and the teammight want to consider
operationally monitoring the allowance/limits or documenting them.

Discussion
T-Woodward

Noted

30

Issue L-10: Decoding will revert if asset != staking
token [RESOLVED]
Source: https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/
issues/19

Vulnerability Detail
Assume that the staking token is USDC, while the Strategy Vault's asset is USDT.

In the MidasStakingStrategy._mintYieldTokens function, it takes the depositData and
force it into ”stakeData” with the (receiver, minReceiveAmount) format. So, if the users
provide a StakingTradeParams data, it will be ignored and overwritten.

File: MidasStakingStrategy.sol
17: function _mintYieldTokens(uint256 assets, address receiver, bytes memory

depositData) internal override {↪→

18: (uint256 minReceiveAmount) = abi.decode(depositData, (uint256));
19: // Ensure that we encode the proper receiver here for KYC checks.
20: bytes memory stakeData = abi.encode(receiver, minReceiveAmount);
21: super._mintYieldTokens(assets, receiver, stakeData);
22: }

The withdrawRequestManager.stakeTokens(address(asset), assets, depositData) will be
executed later, which will execute _preStakingTrade() function internally in Line 108

File: AbstractWithdrawRequestManager.sol
095: function stakeTokens(
096: address depositToken,
097: uint256 amount,
098: bytes calldata data
099:)
..SNIP..
106: uint256 initialYieldTokenBalance =

ERC20(YIELD_TOKEN).balanceOf(address(this));↪→

107: ERC20(depositToken).safeTransferFrom(msg.sender, address(this),
amount);↪→

108: (uint256 stakeTokenAmount, bytes memory stakeData) =
_preStakingTrade(depositToken, amount, data);↪→

109: _stakeTokens(stakeTokenAmount, stakeData);

When the _preStakingTrade() function is executed, since depositToken != STAKING_TOKE
N, it will attempt to decode the data as if it were a StakingTradeParams data in Line 342.
As a result, the abi.decode will revert.

File: AbstractWithdrawRequestManager.sol
330: function _preStakingTrade(

31

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/19
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/19

331: address depositToken,
332: uint256 depositAmount,
333: bytes calldata data
334:)
335: internal
336: returns (uint256 amountBought, bytes memory stakeData)
337: {
338: if (depositToken == STAKING_TOKEN) {
339: amountBought = depositAmount;
340: stakeData = data;
341: } else {
342: StakingTradeParams memory params = abi.decode(data,

(StakingTradeParams));↪→

343: stakeData = params.stakeData;
344:

Impact
Staking will revert if Strategy Vault's asset is not equal to the staking token asset.

Code Snippet
https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd7
04d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L18

Tool Used
Manual Review

Recommendation
For the Midas integration, review whether the protocol only supports a setup where the
Strategy Vault's asset equals the staking token asset. If not, the approach of encoding
the account/receiver needs to be updated (e.g., decode depositData as StakingTradePar
ams and overwrite the params.stakeData = abi.encode(receiver, minReceiveAmount)).

Discussion
T-Woodward

This could be an issue for mHYPERBTC. wBTC and cbBTC are payment tokens on deposit,
but only cbBTC is a payment token on redeem. So currently we would not be able to pair
this vault against wBTC borrow which will be necessary.

_executeInstantRedemption also does not work if asset != staking token.

32

https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd704d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L18
https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd704d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L18

Issue L-11: Hardcoded MidasAccessControl and MIDA
S_GREENLISTED_ROLE [RESOLVED]
Source: https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/
issues/20

Vulnerability Detail
It was observed that the MidasAccessControl and MIDAS_GREENLISTED_ROLE are
hardcoded.

File: IMidas.sol
64: IMidasAccessControl constant MidasAccessControl =

IMidasAccessControl(0x0312A9D1Ff2372DDEdCBB21e4B6389aFc919aC4B);↪→

65: bytes32 constant MIDAS_GREENLISTED_ROLE =
0xd2576bd6a4c5558421de15cb8ecdf4eb3282aac06b94d4f004e8cd0d00f3ebd8;↪→

File: Midas.sol
60: function _stakeTokens(uint256 amount, bytes memory stakeData) internal

override {↪→

61: // NOTE: account must be encoded by the vault in the stake data, not
provided by the user.↪→

62: (address account, uint256 minReceiveAmount) = abi.decode(stakeData,
(address, uint256));↪→

63: if (depositVault.greenlistEnabled()) {
64: // Ensures that any KYC checks are respected.
65: require(MidasAccessControl.hasRole(MIDAS_GREENLISTED_ROLE,

account), "Midas: account is not greenlisted");↪→

66: }

File: Midas.sol
75: function _initiateWithdrawImpl(
..SNIP..
84: {
85: if (redeemVault.greenlistEnabled()) {
86: // Ensures that any KYC checks are respected.
87: require(MidasAccessControl.hasRole(MIDAS_GREENLISTED_ROLE,

account), "Midas: account is not greenlisted");↪→

88: }

If Midas migrates to a new access control contract or uses a different access control
contract for their vaults, the checks will be incorrect and based on the outdated access
control contract.

Impact

33

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/20
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/20

Code Snippet
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649
dadbeb649614bf53c8/src/withdraws/Midas.sol#L65

https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649
dadbeb649614bf53c8/src/withdraws/Midas.sol#L87

Tool Used
Manual Review

Recommendation
Consider deriving the access control contract address and role bytes from the vaults
directly:

• IMidasAccessControl ac = redeemVault.accessControl();

• bytes32 greenListedRole = ac.GREENLISTED_ROLE();

Discussion
T-Woodward

Seems a fine change to me

34

https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L65
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L65
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L87
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L87

Issue L-12: Midas blacklist and sanction [RESOLVED]
Source: https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/
issues/21

Vulnerability Detail
It was observed that the protocol performs the require(MidasAccessControl.hasRole(MI
DAS_GREENLISTED_ROLE, sharesOwner), ...); checks in MidasWithdrawRequestManager._s
takeTokens and MidasWithdrawRequestManager._initiateWithdrawImpl functions to
prevent non-KYCed users from depositing or redeeming when Midas's greenlist is
enabled.

File: Midas.sol
60: function _stakeTokens(uint256 amount, bytes memory stakeData) internal

override {↪→

61: // NOTE: account must be encoded by the vault in the stake data, not
provided by the user.↪→

62: (address account, uint256 minReceiveAmount) = abi.decode(stakeData,
(address, uint256));↪→

63: if (depositVault.greenlistEnabled()) {
64: // Ensures that any KYC checks are respected.
65: require(MidasAccessControl.hasRole(MIDAS_GREENLISTED_ROLE,

account), "Midas: account is not greenlisted");↪→

66: }
..SNIP..
75: function _initiateWithdrawImpl(
..SNIP..
85: if (redeemVault.greenlistEnabled()) {
86: // Ensures that any KYC checks are respected.
87: require(MidasAccessControl.hasRole(MIDAS_GREENLISTED_ROLE,

account), "Midas: account is not greenlisted");↪→

88: }

However, Midas also imposes other restrictions on users, but these were not checked in
the MidasWithdrawRequestManager.

• sanctioned (sanctionsList.isSanctioned(user))

• blacklisted (BLACKLISTED_ROLE)

Impact
Since the MidasWithdrawRequestManager does not check if the account is sanctioned or
blacklisted by Midas, they could utilize Notional contracts to deposit or redeem funds,
which could potentially cause Notional contracts to be sanctioned or blacklisted by
Midas too.

35

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/21
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/21

Code Snippet
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649
dadbeb649614bf53c8/src/withdraws/Midas.sol#L63

https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd7
04d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L35

Tool Used
Manual Review

Recommendation
Consider implementing additional checks to ensure that addresses blacklisted or
sanctioned by Midas cannot use Notional contracts as a proxy to transfer funds.

On a side note, be aware of the risk that greenlisting, blacklisting, and sanctioning can
also be applied to Notional contracts, which can lead to funds being stuck due to
inability to redeem them.

Discussion
T-Woodward

Yes valid. We should add these checks as well

36

https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L63
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L63
https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd704d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L35
https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd704d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L35

IssueL-13: minAmount featureofMidas'sDepositVault
and RedemptionVault [ACKNOWLEDGED]
Source: https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/
issues/22

This issue has been acknowledged by the team but won't be fixed at this time.

Vulnerability Detail
It was observed that the Midas's DepositVault and RedemptionVault has a minAmount
feature. At the time of the audit, the minAmount was set to 0 for both vaults, effectively
disabling it.

The following is a code snippet extracted from Midas's deposit and redeem vaults.

File: ManageableVault.sol
282: /**
283: * @inheritdoc IManageableVault
284: */
285: function setMinAmount(uint256 newAmount) external onlyVaultAdmin {
286: minAmount = newAmount;
287: emit SetMinAmount(msg.sender, newAmount);
288: }

File: DepositVault.sol
657: if (!isFreeFromMinAmount[userCopy]) {
658: _validateMinAmount(userCopy, result.mintAmount);
659: }

File: RedemptionVault.sol
756: if (!isFreeFromMinAmount[user]) {
757: uint256 minRedeemAmount = isFiat ? minFiatRedeemAmount : minAmount;
758: require(minRedeemAmount <= amountMTokenIn, "RV: amount < min");
759: }

However, it may be possible that Midas set the minAmount to non-zero in the future.
Often, this measure is enabled to guard against dust/small deposits and redemption,
which might overwhelm the operation.

The following attempts to assess the impact if this minAmount increases to non-zero in the
future:

1. Increasing minAmount later can retroactively brick a small Notional position. Some
small positions may not be withdrawn if their size is below Midas's minAmount. This
applies to both WithdrawRequest initiation and Instant redemption. Note that
even if the user's positions are large in the first place, they might still become

37

https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/22
https://github.com/sherlock-audit/2025-12-notional-v4-midas-update-jan-7th/issues/22

dust/small due to partial liquidation, partial redemption, partial repayment, and
fee charged by Notional via decaying effective yield token etc.

2. The deposit will revert, but the impact is not too serious, as users can always retry
with a larger deposit.

3. Liquidator might perform partial liquidation, and receive a withdraw request whose
position size is small. In this case, they might not be able to redeem the withdraw
request.

Impact
Redemption and deposit might revert if the position size is small/dust.

Code Snippet
https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd7
04d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L45

https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649
dadbeb649614bf53c8/src/withdraws/Midas.sol#L91

https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649
dadbeb649614bf53c8/src/withdraws/Midas.sol#L72

Tool Used
Manual Review

Recommendation
If possible, consider asking Midas to exempt Notional from the minimum amount
restriction since Midas's vault admin can add Notional contracts into the isFreeFromMinA
mount mapping of their vaults to bypass any minimum amount checks. Note that both
Notional's MidasWithdrawRequestManager and MidasStakingStrategy contracts need to be
whitelisted.

Otherwise, more engineering efforts will be required, and more complex solutions will be
needed to address the three impacts mentioned earlier in the report.

Discussion
T-Woodward

Noted. Will ask Midas to add us to the mapping

38

https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd704d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L45
https://github.com/notional-finance/notional-exponent/blob/2bcf75fd5f77d761a9cd704d865c62c82950ff2e/src/staking/MidasStakingStrategy.sol#L45
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L91
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L91
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L72
https://github.com/notional-finance/notional-exponent/blob/adb8c251efef419e316649dadbeb649614bf53c8/src/withdraws/Midas.sol#L72

Disclaimers
Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the users’
responsibility.

39

	Introduction
	Scope
	Final Commit Hash

	Findings
	Issues Found
	Issues Not Fixed and Not Acknowledged

	Issue M-1: Valuation of withdraw request can be improved [ACKNOWLEDGED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-1: Potential pitfalls due to counterintuitive minReceiveAmount on the Midas vaults [ACKNOWLEDGED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation

	Issue L-2: Residual allowance after redeemInstant is executed [RESOLVED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation

	Issue L-3: Subtracting 1 from tokensClaimed is unnecessary [ACKNOWLEDGED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-4: Incorrect updatedAt returned from MidasUSDOracle [RESOLVED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation

	Issue L-5: Hardcoded USDC/USD oracle address [RESOLVED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-6: TradingModule.getOraclePrice(mHYPER, XXXXX) will not work as intended [ACKNOWLEDGED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation

	Issue L-7: Decimal precision of the rate returned from the MidasWithdrawRequestManager.getExchangeRate() function deviates from other WRMs
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-8: Handling of cancelled redeem request [ACKNOWLEDGED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-9: Midas operational limits can block deposit and redemption [ACKNOWLEDGED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-10: Decoding will revert if asset != staking token [RESOLVED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-11: Hardcoded MidasAccessControl and MIDAS_GREENLISTED_ROLE [RESOLVED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-12: Midas blacklist and sanction [RESOLVED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-13: minAmount feature of Midas's DepositVault and RedemptionVault [ACKNOWLEDGED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Disclaimers

