w SHERLOCK

Security Review For

Collaborative Audit Prepared For: Byzanlink
Lead Security Expert(s): pkqgs90

xiaoming90
Date Audited: January 12 - January 13, 2026

]


https://github.com/pkqs90
https://github.com/xiaoming9090

Introduction

Byzanlink V2 Vault is a non-custodial vault framework designed to support standardized
on-chain asset management through the ERC-4626 tokenized vault standard, with
ERC-2612 permit support. The system facilitates structured asset flows using both
synchronous and asynchronous deposit and withdrawal mechanisms. The smart
contracts operate with immutable logic and do not provide custodial control over user
assets.

Scope

Repository: Byzanlink/ByzanlinkV2Vault

Audited Commit: 79b63d3e59a414615c3f8836cc279cfd3274a257
Final Commit: 16248d8536d3a69f8fe/74a3c74350be015ba0éea
Files:

« contracts/adapters/payb5Adapter.sol

Final Commit Hash
16248d8536d3a69f8fe74a3c74350be015ba0éea

Findings
Each issue has an assigned severity:

« High issues are directly exploitable security vulnerabilities that need to be fixed.

« Medium issues are security vulnerabilities that may not be directly exploitable or
may require certain conditions in order to be exploited. All major issues should be
addressed.

e Low/Info issues are non-exploitable, informational findings that do not pose a
security risk or impact the system’s integrity. These issues are typically cosmetic or
related to compliance requirements, and are not considered a priority for
remediation.

Issues Found

High Medium Low/Info

0] 2 0]


https://github.com/Byzanlink/ByzanlinkV2Vault/tree/16248d8536d3a69f8fe74a3c74350be015ba06ea

Issues Not Fixed and Not Acknowledged

High Medium Low/Info

0] 0] 0



Issue M-1: NAV inflation when operator calls allo-
cate without new deposits [RESOLVED]

Source: https://github.com/sherlock-audit/2026-01-byzanlink-update-jan-12th/issues/2

Vulnerability Detail

The Pay5Adapter contract manages funds between a VaultV2 and a borrowerVault,
tracking the total value via a nav (Net Asset Value) state variable. The allocate ()
function transfers USDC from the adapter to the borrowerVault and increases nav
accordingly.

The allocate() function is callable by both the vault and the operator via the onlyVault0
rOperator modifier:

https://github.com/sherlock-audit/2026-01-byzanlink-update-jan-12th/blob/main/Byza
nlinkV2Vault/contracts/adapters/pay5Adapter.sol#L139

function allocate(
bytes memory /* data */,
uint256 assets,
bytes4 /* selector x/,
address /* sender */

external

override

onlyVaultOrOperator

nonReentrant

returns (bytes32[] memory, int256 change)

if (assets == 0) revert ErrorsLib.InvalidAmount () ;

asset.safeTransfer (borrowerVault, assets);
paybState.nav += assets;

When called by the vault, new USDC is first transferred into the adapter, so the nav
increase reflects actual new deposits. However, when called by the operator, no new
USDC enters the system - the function simply moves existing USDC (e.g., funds that
flowed back for pending withdrawals) to the borrowerVault. Despite this, nav is still
incremented by assets.

Example: NAV =10,000 USDC, and 500 USDC flows back to the adapter for withdrawal
processing. If the operator calls allocate (500), the 500 USDC moves back to borrowerVa

ult and NAV increases to 10,500 USDC, even though total assets remain unchanged at
10,000 USDC.


https://github.com/sherlock-audit/2026-01-byzanlink-update-jan-12th/issues/2
https://github.com/sherlock-audit/2026-01-byzanlink-update-jan-12th/blob/main/ByzanlinkV2Vault/contracts/adapters/pay5Adapter.sol#L139
https://github.com/sherlock-audit/2026-01-byzanlink-update-jan-12th/blob/main/ByzanlinkV2Vault/contracts/adapters/pay5Adapter.sol#L139

Impact

NAV becomes inflated and out of sync with actual assets. Since realAssets() returns pay
5State.nav, this inflated value affects share pricing calculations in VaultV2, potentially
allowing users to redeem more than their fair share or causing accounting
inconsistencies.

Recommendation
Only increment nav when the caller is the vault (indicating actual new deposits):

if (msg.sender == vault) {
paybState.nav += assets;

}



Issue M-2: pay5State.nav will beincorrect within the
vault [RESOLVED]

Source: https://github.com/sherlock-audit/2026-01-byzanlink-update-jan-12th/issues/3

Vulnerability Detail

Assume the following sequence of actions:
1. pay5State.nav =1000 USDC
deallocateAsync() is executed and an event is emitted
Trigger a offchain withdrawal request to withdraw 200 USDC from Credible.
200 USDC sent to adaptor. Credible has 800 USDC now.

updateNav () is triggered. Since Credible only has 800 USDC, the new NAV will be
800.

o ;N

From this point, two outcomes can happen:
1. Bound check can fail because 1000 to 800 is a big jump, and it will revert.
2. NAV gets updated to 800.

Assume that the NAV gets updated to 800. In this case, the deallocate() is triggered by
the operator or processWithdrawals (), and pay5State.nav -= 200. So pay5State.nav
becomes 600, which deviates from the Credible's total amount of 800.

Impact

The pay5State.nav will be incorrect in the vault.

Code Snippet
Tool Used

Manual Review

Recommendation

Discussed and confirmed resolved in final commit.


https://github.com/sherlock-audit/2026-01-byzanlink-update-jan-12th/issues/3

Disclaimers

Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the users’
responsibility.



	Introduction
	Scope
	Final Commit Hash

	Findings
	Issues Found
	Issues Not Fixed and Not Acknowledged


	Issue M-1: NAV inflation when operator calls allocate without new deposits [RESOLVED]
	Vulnerability Detail
	Impact
	Recommendation

	Issue M-2: pay5State.nav will be incorrect within the vault [RESOLVED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation

	Disclaimers

