w SHERLOCK

Security Review For

Collaborative Audit Prepared For: Byzanlink
Lead Security Expert(s): pkqgs90

xiaoming90
Date Audited: November 17 - November 19, 2025

]


https://github.com/pkqs90
https://github.com/xiaoming9090

Introduction

Byzanlink V2 Vault is a non-custodial vault framework designed to support standardized
on-chain asset management through the ERC-4626 tokenized vault standard, with
ERC-2612 permit support. The system facilitates structured asset flows using both
synchronous and asynchronous deposit and withdrawal mechanisms. The smart
contracts operate with immutable logic and do not provide custodial control over user

assets.

Scope
Repository: Byzanlink/ByzanlinkV2Vault
Audited Commit: 7b6dbbalb51606d00546e7bc9d629e0d28702f29
Final Commit: 5fec07143696ceb509dafcelc74c78daf4690f54
Files:

» contracts/adapters/nAlphaAdapter.sol

» contracts/ByzanlinkWithdrawalManager.sol

» contracts/libraries/doubleEndedQueue.sol

« contracts/libraries/Panic.sol

e contracts/VaultV2.sol

Final Commit Hash
5fec07143696ceb509dafcelc74c78daf4690f54

Findings
Each issue has an assigned severity:
« High issues are directly exploitable security vulnerabilities that need to be fixed.

« Medium issues are security vulnerabilities that may not be directly exploitable or
may require certain conditions in order to be exploited. All major issues should be

addressed.

« Low/Info issues are non-exploitable, informational findings that do not pose a
security risk or impact the system’s integrity. These issues are typically cosmetic or
related to compliance requirements, and are not considered a priority for
remediation.


https://github.com/Byzanlink/ByzanlinkV2Vault/tree/5fec07143696ceb509dafce1c74c78daf4690f54

Issues Found

High Medium

2 5

Issues Not Fixed and Not Acknowledged

High Medium

0] 0]

Low/Info

o)

Low/Info

0



Issue H-1: Allocation cap tracking underflows when
deallocating yield-bearing positions from nAlphaAdaptel
[RESOLVED]

Source: https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/é

Vulnerability Detail

VaultV2 tracks each adapter's allocation using the caps[id] .allocation mapping. When
allocate() ordeallocate() is called, the adapter returns an int256 change value that
represents the delta in the adapter's position. VaultV2 then updates the allocation:

https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2
Vault/contracts/VaultV2.sol#L588 https://github.com/sherlock-audit/2025-11-byzanlin
k-nov-17th/blob/main/ByzanlinkV2Vault/contracts/VaultV2.sol#L616

_caps.allocation = (int256(_caps.allocation) + change).toUint256() ;

The nAlphaAdapter incorrectly returns the absolute amount being
allocated/deallocated instead of the actual realAsset () delta:

https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2
Vault/contracts/adapters/nAlphaAdapter.sol#L126
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2
Vault/contracts/adapters/nAlphaAdapter.sol#L201

function allocate(

bytes memory /* data */,

uint256 assets,

bytes4 /* selector */,

address /* sender */
) external override onlyVault nonReentrant returns (bytes32[] memory, int256
< change) {

@> return (ids(), int256(assets));
}

function deallocate(
bytes memory,
uint256 assets,
bytes4,
address
) external override onlyVault nonReentrant returns (bytes32[] memory, int256) {

return (ids(), -int256(assets));


https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/6
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2Vault/contracts/VaultV2.sol#L588
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2Vault/contracts/VaultV2.sol#L588
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2Vault/contracts/VaultV2.sol#L616
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2Vault/contracts/VaultV2.sol#L616
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2Vault/contracts/adapters/nAlphaAdapter.sol#L126
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2Vault/contracts/adapters/nAlphaAdapter.sol#L126
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2Vault/contracts/adapters/nAlphaAdapter.sol#L201
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2Vault/contracts/adapters/nAlphaAdapter.sol#L201

A scenario is, if 100 USDC is allocated to nAlpha, then later it grows to 105 USDC, when
we try to deallocate 105 USDC, the vaultv2's allocation track will underflow (100 - 105).

Impact

The protocol will revert when attempting to deallocate from nAlphaAdapter after yield
accrual.

Recommendation

Use the implementation as seen in MorphoVaultViAdapter, return the difference between
old allocation and new realAssets().

Discussion

Raghul2753
Thanks for highlighting this scenario.

Yes, this is a valid finding — when the allocated amount increases due to yield (e.g., 100
USDC growing to 105 USDC in nAlpha), attempting to directly deduct 105 from the
recorded allocation would cause an underflow and revert.

This was a miss on our end. We will adopt the same approach as seen in
MorphoVaultV1Adapter, and instead compute the delta as:

newRealAssets() - oldAllocation

and return that difference, rather than subtracting the full amount from the tracked
allocation.

This ensures the allocation tracking remains safe and accurate even after yield accrues.

A fix will be added in the next commit.



Issue H-2: Withdrawal queue processing can be DoS'd
with spam requests causing out-of-gas errors [RE-
SOLVED]

Source: https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/7

Vulnerability Detail

Both withdrawFundsFromAdapter () and processWithdrawals () iterate through all pending
withdrawal requests in unbounded loops:

https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2
Vault/contracts/ByzanlinkWithdrawalManager.sol#L170-L176

for (uint256 i = startIndex; i < currentQueueEnd ; i++) {
bytes memory encodedData = withdrawalQueue._datal[uint128(i)];
WithdrawQueueStructs.WithdrawRequestData memory data =
«» _decodeWithdrawData(encodedData) ;
emit EventsLib.NalphaRequestItem(i, data.user, data.receiver, data.shares,
< data.expectedAssets, data.requestHash);
totalShares += data.shares;
count++;

Each user can submit up to maxPendingPerUser (default 5) withdrawal requests with no
minimum amount. An attacker can create multiple addresses and spam thousands of 1
wei withdrawal requests. When the operator attempts to process these, the loop iterates
through every request, eventually hitting the block gas limit and reverting.

Impact

Withdrawal processing becomes permanently blocked as the queue grows beyond the
gas limit threshold. Legitimate users cannot withdraw funds.

Recommendation

1. Add a batchSize parameter to both functions to process withdrawals in bounded
batches.

2. Add a minimum redemption limit.

Discussion
Raghul2753


https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/7
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L170-L176
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L170-L176

We agree with the issue and are planning to address it, but we want feedback on the
best approach before finalizing implementation.

Minimum Withdrawl Amount : For the minimum withdrawal amount, we want to balance
accessibility with protection against spam attacks. Setting a low threshold such as 1
USDC keeps the system user-friendly, but still allows attackers to submit many tiny
requests cheaply. Setting a slightly higher limit such as 5-10 USDC offers stronger
protection, but may be seen as restrictive. Another approach is making the minimum
withdrawal limit configurable so governance can adjust it over time as real usage data
becomes available. From Defi apps, What would be your suggestion to keep the
minimum amount, for prevention D'Dos attacks

Batch Size in Contract Regarding processing limits, one option is to store a batch size
inside the contract and allow governance to update it. This ensures the processing loop
always remains within a controlled limit, avoiding gas exhaustion while still being
adjustable through governance decisions. We are planning to keep this Value as 1000. Is
this value fine, or we have keeep any lower or higher values.

Sending Batch Size as Parameters The other option is to pass the batch size as a
parameter to the withdrawal processing function. This gives the operator the flexibility
to select how many requests to process in a single call, based on current gas conditions
and queue growth.

We would like feedback on which approach is generally preferred in production DeFi
systems and what minimum withdrawal limit is considered reasonable.

pkqs?0

So since the current design requires everything handled onchain, hitting gas limit is
inevitable. Especially during processWithdrawals () where each loop requires a ERC20
transfer (which is gas costly due to storage writes).

A more robust design would be something similar to Lido’s withdrawQueue where 1)
iterating requests in withdrawFundsFromAdapter () is handled offchain, and 2) users need
to claim shares for the finalized withdrawals themselves instead of operators claiming
for them. This way no looping is involved onchain.

Considering that would be a major change to the current design, I'd recommend the
following:

1. Set1USDC as minimum withdrawal limit, but also make it updateable

2. Have operators manually pass in the amount of requests to process instead of
hardcoding it, for both withdrawFundsFromAdapter () and processWithdrawals ()

3. In cancelWithdrawals () add a feature to transfer the vault shares to treasury, to
punish malicious users if they try to ddos the queue


https://github.com/lidofinance/core/blob/master/contracts/0.8.9/WithdrawalQueue.sol

Issue M-1: Async deallocations may fail when idle
asset donations inflate withdrawal amounts beyond
adapter's BoringVault shares [RESOLVED]

Source: https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/8

Vulnerability Detail

VaultV2's realAssets () calculation includes idle USDC held in both the vault itself and
the nAlphaAdapter. When someone donates USDC to either VaultV2 or the
nAlphaAdapter, the vault's asset/share ratio increases.

In deallocateAsync (), the adapter calculates how many nAlphaVault shares to redeem
based on the withdrawal amount:

https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2
Vault/contracts/adapters/nAlphaAdapter.sol#L144

function deallocateAsync(
bytes memory /* data */,
uint256 assets,
bytes4 /* selector */,
address sender
) external nonReentrant onlyVault {

o> uint256 boringVaultShares = _assetsToShares(assets);

Consider this scenario:
1. User deposits 100 USDC to VaultV2, which allocates to nAlphaAdapter
2. Adapter deposits into BoringVault, receiving 100 shares (1:1 ratio)
3. Someone donates 2 USDC idle assets to VaultV2 or nAlphaAdapter
4. VaultV2's total assets increase to 102 USDC, improving the share price
5. User withdraws, requesting assets = 102 USDC worth
6. deallocateAsync() calculates boringVaultShares = 102
7. Adapter only holds 100 BoringVault shares

The subsequent nAlphaAtomicQueue.updateAtomicRequest () call fails because the
adapter cannot transfer 102 shares when it only has 100.


https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/8
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2Vault/contracts/adapters/nAlphaAdapter.sol#L144
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2Vault/contracts/adapters/nAlphaAdapter.sol#L144

Impact

User withdrawals may fail when idle asset donations inflate withdrawal amounts beyond
the adapter's actual BoringVault share balance.

Recommendation

Change to: uint256 boringVaultShares = min(boringVault.balanceOf (address(this)),
_assetsToShares(assets));

This is an edge case when nAlphaAdapter only has last amount of nAlphaShares left. In
this case, if boringVaultShares < boringVault.balanceOf (address(this)), it should be
sufficient to submit an atomicRequest for redeeming the boringVault.balanceOf (addres
s(this)) amount instead of boringVaultShares. After all nAlphaShares is redeemed to
USDC, user can always complete withdrawal during processWithdrawals () phase.

Discussion
Raghul2753

We agree to this Issue . We will take the Minimum value of boring vault shares of the
adapter or assetsToShares value, as last request would fail if the shares exceeds the
current holding.

We have another question on keeping the idle assets in Adapter. Is it okay to keep some
idle assets in Adapter, or we have to keep the adapter clean of not keeping any idle
assets.

pkqs90

| think it's okay to keep some idle assets in the adapter as a buffer. This will also help
mitigate the issue mentioned here
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/I11.



https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/11

Issue M-2: Blocklisted receiver address blocks en-
tire withdrawal queue processing [ACKNOWLEDGED)]

Source: https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/10

This issue has been acknowledged by the team but won't be fixed at this time.

Vulnerability Detail

The processWithdrawals () function processes withdrawal requests sequentially from the
front of the queue. For each request, it transfers assets to the user-specified receiver
address:

https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2
Vault/contracts/ByzanlinkWithdrawalManager.sol#L197

while (!withdrawalQueue.empty() && withdrawalQueue._begin < fundsWithdrawn) {
bytes memory encodedData = withdrawalQueue.front() ;
WithdrawQueueStructs.WithdrawRequestData memory data =
< _decodeWithdrawData(encodedData) ;
uint256 assets = vault.previewRedeem(data.shares);

bool isReady = asset.balanceOf (address(adapter)) >= assets;
if (!isReady) break;

©@> wuint256 assetsReceived = vault.redeem(data.shares, data.receiver,
<> address(this));

USDC has a blocklist mechanism where certain addresses cannot receive transfers. If a
user specifies a blocklisted address as their receiver when calling requestWithdrawal (),
the vault.redeem() call will revert when USDC transfer fails. Since the queue processes in
FIFO order, this malicious request blocks subsequent legitimate withdrawals until the
owner manually cancels it via cancelWithdrawals ().

However, in the current implementation, for the withdrawals that are placed before the
blocklisted receiver, they cannot be processed and must be cancelled as well.

Impact

A malicious user can DoS the withdrawal system by submitting a withdrawal request with
a blocklisted receiver address.

10


https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/10
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L197
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L197

Recommendation

Add a withdrawCount to the processWithdrawals() function to process up to only withdra
wCount withdraws, so admins can still trigger the normal withdraws, and only cancel the
pending one.

Discussion

Raghul2753
Hi @pkgs?0 - thanks for bringing this issue to our attention.

This is a valid concern: since processWithdrawals() operates strictly in FIFO order, a
withdrawal request targeting a USDC blocklisted address can cause vault.redeem() to
revert and block subsequent legitimate withdrawals until manual intervention via
cancelWithdrawals().

To address this, we are evaluating a few possible approaches:

1. use batch size parameter from Issue #7 one of the questions we raised was whether
we can pass batchSize as a parameter to control how many withdrawals are
processed in a single call. If that approach is implemented, we can reuse the same
parameter here as well. This would ensure that processWithdrawals() only processes
a limited number of requests per execution, allowing admins to continue processing
other withdrawals instead of getting blocked by a single failing one.

2. Use both batch size and process count Another option is to introduce a dedicated
limit (e.g., withdrawCount) in addition to batch size, giving more flexibility in how
many withdrawals are executed per call. This could provide finer control to
operators in different situations.

3. Pre-check for blacklisted receiver addresses USDC provides an isBlacklisted check.
We could use this: During requestWithdrawal() to reject blocklisted receivers
upfront, or During processWithdrawals() to detect such cases and automatically
invalidate/remove the entry from the queue.

We will evaluate and implement the best option to ensure that a malicious or invalid
receiver address cannot halt the withdrawal pipeline.

pkqs90

| think it's best to allow the operator to specify the amount of requests to process for
both processWithdrawals () and withdrawFundsFromAdapter (). Best to make it a passable
parameter for both functions.

For the blocklist example, consider this case, in the queue there are: [7 normal requests,
1 blocklisted request, 10 normal requests], then admin can call processWithdrawals/(
withdrawCount = 7) to first process the 7 normal requests, cancel the 1 blocklisted
request, and process the others.

1



Issue M-3: Withdrawal processing fails when VaultV2
share price increases between async deallocation
and processing [RESOLVED]

Source: https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/11

Vulnerability Detail

The withdrawal system operates in two steps: withdrawFundsFromAdapter () initiates
async deallocation, then processWithdrawals () executes the redemptions. The amount
deallocated is calculated at initiation time:

https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2
Vault/contracts/ByzanlinkWithdrawalManager.sol#L180

if (totalShares > 0) {
uint256 totalAssets = vault.convertToAssets(totalShares);
fundsWithdrawn = newQueueEndIndex;
vault.deallocateAsync(adapter, "", totalAssets);

During async processing (which can take days for nAlpha atomic queue resolution),
VaultV2's share price can increase from: (1) nAlpha/USDC exchange rate appreciation, or
(2) idle USDC donations to VaultV2 or the adapter. When processWithdrawals() executes,
it recalculates based on the current price:

https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2
Vault/contracts/ByzanlinkWithdrawalManager.sol#L200-L202

uint256 assets = vault.previewRedeem(data.shares);

bool isReady = asset.balanceOf (address(adapter)) >= assets;
if (!isReady) break;

If share price increased from 1.00 to 1.05, the adapter only has assets for 1.00 per share
but needs 1.05, causing isReady = false and halting all withdrawal processing.

Impact

Withdrawals become stuck whenever VaultV2's share price appreciates between
deallocation request and processing. However, if there are >1 withdrawals in a batch,
most likely only the last withdrawal will fail. If the batch only has one request, then it will
completely block until additional deallocations are initiated.

12


https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/11
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L180
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L180
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L200-L202
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L200-L202

Recommendation

1. Allocate some USDC as buffer within nAlphaAdapter to handle nAlpha/USDC
natural price growth

2. Change the isReady check to bool isReady = asset.balanceOf (address(vault)) +
asset.balance0Of (address(adapter)) >= assets;, since the idle USDC in vault can
be used for redemption as well

Discussion
Raghul2753

We agree with the issue and the scenario described. When the share price increases
between the async deallocation request and the actual processing, the assets available
in the adapter may not be sufficient to redeem at the new price, which can cause
isReady to fail and halt withdrawal execution.

1. Buffer Size Suggestion

We would like guidance on what would be a reasonable idle buffer percentage to
maintain in the adapter so that withdrawals do not fail under normal price
movement.Since the idle assets are included in NAV and do not grow (unlike the
deployed capital), maintaining too large a buffer may reduce growth and APY. So we are
looking for a balanced threshold that: Minimizes the chance of withdrawal failures due
to price appreciation.Minimizes negative impact on yield/APY

If there are industry-standard heuristics (e.g., 0.5% - 2% idle buffer, dynamic buffer
scaling, etc.), we would welcome input.

2. Updated isReady Logic

We will update the readiness check so it considers both: Idle assets in the adapter Idle
assets in the vault

This allows redemption to proceed even if some liquidity is sitting in the vault instead of
the adapter.

3. Liquidity Adapter Impact

Since we have Liquidity Adapter, Whenever capital flows in, Assets will be moved
straight into nAlpha Vault. Idle liquidity will generally only exist in the vault or adapter
due to donations or manual top-ups. Under normal operation, we expect almost all
capital to be fully deployed, so this scenario should be rare—unless intentional buffer
space is maintained.

We will implement the isReady logic change and seek guidance on a suitable idle buffer
strategy to ensure stable operation without negatively impacting APY.

pkqs90
| think 1% buffer size should be good. Best to also make it adjustable for potential future

changes.

13



Raghul2753
Hi @pkgs?0 - | had one clarification regarding the allocation process.

For every allocation, should we maintain a configurable buffer within the adapter itself
before assigning USDC, or is it better to manage the buffer manually from the Byzanlink
side?

We are already planning to make the initial investment into the nAlpha vault. Along with
that, we are considering donating around 10 USDC to the adapter as a small buffer.

From your perspective, which approach would be more appropriate?

14



Issue M-4: Lack of ability to limit the number of re-
quests per batch leading to DOS [RESOLVED]

Source: https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/15

Vulnerability Detail

Noted that the withdrawFundsFromAdapter () function is intended to be executed every
24 hours. The issue is that the function batches all pending requests, and there is no
option to limit the number of requests it batches.

If on a specific day, there is a large number of requests, attempting to batch all of them
might result in an out-of-gas error and revert. In this case, none of the requests can be
processed.

The same issue also applies to the processWithdrawals () function.

Impact

Withdrawal requests cannot be processed if there is a large number of legitimate
pending requests.

Code Snippet

https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36
102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManage
r.sol#L160

https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36
102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManage
r.sol#L190

Tool Used

Manual Review

Recommendation

Consider adding an option that lets the operator define how many requests to batch
each time to work around this.

15


https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/15
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L160
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L160
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L160
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L190
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L190
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L190

Discussion
Raghul2753

We agree with the issue and are planning to address it, but we want feedback on the
best approach before finalizing implementation.

Minimum Withdrawl Amount : For the minimum withdrawal amount, we want to balance
accessibility with protection against spam attacks. Setting a low threshold such as1
USDC keeps the system user-friendly, but still allows attackers to submit many tiny
requests cheaply. Setting a slightly higher limit such as 5-10 USDC offers stronger
protection, but may be seen as restrictive. Another approach is making the minimum
withdrawal limit configurable so governance can adjust it over time as real usage data
becomes available. From Defi apps, What would be your suggestion to keep the
minimum amount, for prevention D'Dos attacks

Batch Size in Contract Regarding processing limits, one option is to store a batch size
inside the contract and allow governance to update it. This ensures the processing loop
always remains within a controlled limit, avoiding gas exhaustion while still being
adjustable through governance decisions. We are planning to keep this Value as 1000. Is
this value fine, or we have keeep any lower or higher values.

Sending Batch Size as Parameters The other option is to pass the batch size as a
parameter to the withdrawal processing function. This gives the operator the flexibility
to select how many requests to process in a single call, based on current gas conditions
and queue growth.

As We got reply from #7 , We will pass the betch size as parameters to both the methods

16



Issue M-5: Withdrawal requests cannot be processed
even if there is sufficient liquidity [RESOLVED]

Source: https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/16

Vulnerability Detail

The isReady only checks if there is sufficient liquidity (USDC) in the adapter contract.

However, after reviewing the code of the VaultV2.exit () function, the redemption can
proceed as long as there is sufficient liquidity in the VaultV2 AND the adaptor. In Line 818
below, it will check if there is sufficient liquidity in the VaultV2. If not, it will attempt to
fetch assets - idleAssets assets from the vault's liquidity adaptor to cover it.

File: VaultV2.sol

813: /// @dev Internal function for withdraw and redeem.

814: function exit(uint256 assets, uint256 shares, address receiver, address
<, onBehalf) internal {

815: require (canSendShares (onBehalf), ErrorsLib.CannotSendShares()) ;
816: require(canReceiveAssets(receiver), ErrorsLib.CannotReceiveAssets());
817:

818: uint256 idleAssets = IERC20(asset) .balanceOf (address(this));

819: if (assets > idleAssets && liquidityAdapter != address(0)) {

820: deallocateInternal (liquidityAdapter, liquidityData, assets -

— idleAssets);

821: +

Thus, even if there is sufficient liquidity in the VaultV2 + adaptor for the redemption to
proceed, the code will incorrectly assume there is a liquidity shortage because it only
considers the liquidity in the adaptor.

File: ByzanlinkWithdrawalManager.sol

190: function processWithdrawals(address adapter) external nonReentrant
— onlyOperator whenNotPaused {

191: if (withdrawalQueue.empty()) revert ErrorsLib.QueueEmpty() ;
192: if (withdrawalQueue._begin >= fundsWithdrawn) revert

— ErrorsLib.NoItemsSentToNAlpha() ;

193:

194 : uint256 processed = O;

195: uint256 totalDistributed = 0;

196:

197: while (!withdrawalQueue.empty() && withdrawalQueue._begin <
< fundsWithdrawn) {

198: bytes memory encodedData = withdrawalQueue.front();
19895 WithdrawQueueStructs.WithdrawRequestData memory data =
< _decodeWithdrawData(encodedData) ;

200: uint256 assets = vault.previewRedeem(data.shares);

17


https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/16

201:
202: bool isReady = asset.balanceOf (address(adapter)) >= assets;

Impact

Withdrawal requests cannot be processed even if there is sufficient liquidity.

Code Snippet

https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36
102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManage
r.sol#L202

Tool Used

Manual Review

Recommendation

Consider implementing a more accurate check, as shown below.

- bool isReady = asset.balanceOf (address(adapter)) >= assets;
+ bool isReady = (asset.balance(Of (address(adapter)) +
<, asset.balance0f (address(vault))) >= assets;

Discussion
Raghul2753

As Discussed in Issue #11

We will update the isReady Variable to take the idle balance of adapter and the idle
balance of Vault

18


https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L202
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L202
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L202

Issue L-1: Withdrawal processing cannot handle dis-
tributed liquidity across multiple adapters [ACKNOWL-
EDGED]

Source: https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/9?

This issue has been acknowledged by the team but won't be fixed at this time.

Vulnerability Detail

The withdrawFundsFromAdapter () function processes all pending withdrawal requests by
calculating the total required assets and attempting to deallocate them from a single
specified adapter:

https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2
Vault/contracts/ByzanlinkWithdrawalManager.sol#L160

function withdrawFundsFromAdapter (address adapter) external onlyOperator {

for (uint256 i = startIndex; i < currentQueueEnd ; i++) {
bytes memory encodedData = withdrawalQueue._datal[uint128(i)];
WithdrawQueueStructs.WithdrawRequestData memory data =
< _decodeWithdrawData(encodedData) ;
totalShares += data.shares;
count++;

}

if (totalShares > 0) {
uint256 totalAssets = vault.convertToAssets(totalShares) ;
vault.deallocateAsync(adapter, "", totalAssets);

If VaultV2 uses multiple nAlphaAdapters with distributed allocations (e.g., Adapter A
with 1000 USDC, Adapter B with 1000 USDC), and users queue 1500 USDC worth of
withdrawals, calling withdrawFundsFromAdapter () will attempt to deallocate 1500 USDC
from an adapter, which neither A or B has. This fails despite the protocol having 2000
USDC total liquidity across both adapters.

Note: Considering the first version only supports one adapter, this isn't an issue for now.

Impact

When liquidity is distributed across multiple adapters, withdrawal processing becomes
impossible if queued requests exceed any single adapter's capacity, even when

19


https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/9
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L160
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L160

aggregate protocol liquidity is sufficient. Users cannot withdraw funds despite available
liquidity.

Recommendation

Either: (1) document that only a single adapter should be used, or (2) modify withdrawFund
sFromAdapter () to accept multiple adapters and distribute deallocations proportionally
based on each adapter's available liquidity.

Discussion

Raghul2753
Hi @pkgs?0 - thanks for raising this openly.

You are correct. We initially explored supporting multiple adapters directly within the
Withdrawal Manager. However, implementing on-chain allocation and deallocation
logic across multiple adapters introduces significant complexity. To avoid this, we
decided to keep the allocation handling off-chain for the current release.

With the current design, the Withdrawal Manager effectively supports only one
adapter, and adding a second adapter would break the existing flow. We will document
this clearly as a current limitation: the present Withdrawal Manager supports only a
single adapter.

Looking ahead, our roadmap includes introducing a dedicated Liquidity Adapter layer
that will internally manage distribution across multiple adapters. In that model:

1. Allocation requests will be split and routed to multiple adapters off-chain.
2. Deallocation logic will follow the same approach.

3. The Withdrawal Manager will still interact with only one Liquidity Adapter, keeping
its interface unchanged.

This enhancement is part of our planned future improvements.

20



Issue L-2: Deposit fees from BoringVault are unfairly
socialized to all VaultV2 shareholders [ACKNOWL-
EDGED]

Source: https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/12

This issue has been acknowledged by the team but won't be fixed at this time.

Vulnerability Detail

When users deposit into VaultV2, the vault allocates funds to the 1iquidityAdapter
(nAlphaAdapter) if configured. The adapter then deposits assets into the underlying
BoringVault via the Teller:

https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2
Vault/contracts/adapters/nAlphaAdapter.sol#L113-L118

uint256 boringVaultShares = teller.deposit(
asset,
assets,
minimumSharesToMint

)

While nAlpha currently don't charge deposit fees, some BoringVault implementations
(e.g., Seven Labs’ TellerWithMultiAssetSupport) do charge deposit premiumes.

If a deposit fee exists, the actual BoringVault shares received will be worth less than the
deposited amount. However, VaultV2 mints shares to the depositor based on the full
deposit amount before the fee. When accrueInterestView() is called, it sums adapter.re
alAssets() which reflects the post-fee value, causing an immediate loss that is
socialized across all vault shareholders rather than being borne solely by the depositor.

This issue was previously identified as M-04 in the Morpho Vault V2 Blackthorn audit.

Impact

No impact for now, because nAlpha does not charge deposit fees. But this is something
to look over for future integrations. If BoringVault charges deposit fees, each deposit
unfairly dilutes existing shareholders rather than having the depositor bear their own
deposit costs.

Recommendation
N/A

2]


https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/12
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2Vault/contracts/adapters/nAlphaAdapter.sol#L113-L118
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2Vault/contracts/adapters/nAlphaAdapter.sol#L113-L118
https://github.com/Se7en-Seas/boring-vault/blob/main/src/base/Roles/TellerWithMultiAssetSupport.sol#L476
https://github.com/morpho-org/vault-v2/blob/main/audits/2025-09-15-blackthorn.pdf

Discussion

Raghul2753
Hi @pkqgs?0 - thanks for bringing this up.

Since nAlpha currently has no deposit fee, this issue does not affect our present
integration. However, we will document the problem and take it into account when
integrating with future vaults that do apply deposit fees.

Just to confirm our understanding for future support: Each adapter should be able to
define its own deposit fee configuration.

1. When a user deposits USDC, the adapter should:

2. Read the configured deposit fee rate

3. Subtract the fee from the input USDC

4. Deposit only the post-fee amount into the underlying vault
5. Mint shares based on the reduced amount

This ensures that VaultV2 tracks the actual deployable capital and that share minting
reflects the net amount after fees.

Please confirm if this interpretation is correct.
pkqs90

| think ideally to support deposit fees, vault v2 has to stop supporting "default liquidity
adapters”, or the adapter logic would be too complicated, i.e. the adapter has to
differentiate between a "user deposit + liquidity allocate” vs. "operator triggered
liquidity allocate”.

The key is the two transactions: 1) user depositing USDC into vault v2, and 2) USDC being
allocated to adapter, should not be in 1 transaction.

22



Issue L-3: Instant withdrawals incorrectly validate
treasury balance including fees instead of actual
transfer amount [RESOLVED]

Source: https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/13

Vulnerability Detail

The requestInstantWithdrawal () function allows users to instantly redeem VaultV2
shares by receiving assets directly from the treasury wallet, with a fee deducted. The
function calculates the user's expected assets, applies a fee, and transfers the post-fee
amount:

https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2
Vault/contracts/ByzanlinkWithdrawalManager.sol#L71

uint256 expectedAssets = vault.convertToAssets(shares);
uint256 feeAmount = expectedAssets.mulDivDown(instantWithdrawalFeeBps, BPSUNIT) ;
assetsReceived = expectedAssets - feeAmount;

// Check treasury has enough assets
if (expectedAssets > asset.balanceOf (treasuryWallet)) revert
— ErrorsLib.InsufficientTreasuryBalance();

// Transfer assets from treasury to receiver (after fee deduction)

if (lasset.transferFrom(treasuryWallet, receiver, assetsReceived)) revert
«» ErrorsLib.AssetTransferFailed();

The balance check validates that the treasury has expectedAssets, but only assetsReceiv
ed is actually transferred. If the treasury balance is between assetsReceived and expecte
dAssets, the transaction reverts unnecessarily despite having sufficient funds to fulfill
the withdrawal.

Impact

Instant withdrawals may revert when the treasury has enough assets.

Recommendation
Change the balance check to validate against the actual transfer amount:

if (assetsReceived > asset.balanceOf (treasuryWallet)) revert
< ErrorsLib.InsufficientTreasuryBalance();

23


https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/13
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L71
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/main/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L71

Discussion

Raghul2753
Hi @pkqgs?0

It is a Miss from our End, previously we were not keeping the additional bps for the
Instant Withdrawl

Thanks for Bringing this out. We will Update the code for this issue

24



Issue L-4: Multiple request withdrawals might have
the same hash. [RESOLVED]

Source: https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/14

Vulnerability Detail

The value of queueIndex is retrieved from the withdrawal queue length (withdrawalQueue.
length()). This variable is part of the input used to generate the request hash.
However, this might not produce a unique hash in an edge case.

Bob submits two (2) separate requestWithdrawal transactions to the mempool at the
same time, or on two different times (T1 and T2).

TX1 - requestWithdrawal(100, Bob)
TX2 - requestWithdrawal (100, Bob)

Assume that in Block 1000 (blk.timestamp = 1000), the withdrawal queue length is 50.
Both TX1 and TX2 get executed in Block 1000, and the transactions are ordered in the
following manner:

1. TX1 - requestWithdrawal(100, Bob) - Hash input => [Bob, Bob, 100, T1I000, 50]. The
withdrawal queue length is incremented to 51.

2. processWithdrawals() TX is executed, and one request is processed. Thus, the
Withdrawal Queue is reduced by one, and its length becomes 50 again.

3. TX2 - requestWithdrawal(100, Bob) - Hash input => [Bob, Bob, 100, T1000, 50]. The
withdrawal queue length is incremented to 51.

Thus, there will be two request withdrawals with the same hash.

Impact

Multiple request withdrawals might share the same hash, leading to issues when
referencing the request off-chain or on-chain.

Code Snippet

https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36
102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManage
r.sol#L84

25


https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/14
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L84
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L84
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L84

Tool Used

Manual Review

Recommendation

Consider using a unique nonce variable that always increments by one, instead of relying
on withdrawalQueue.length(), whose length might increase or decrease within a single
block.

Discussion
Raghul2753
Hi @xiaoming?090

Yes We agree to this scenarios. We took reference from other Vault existing in the
MArket and kept this. But yes there is a possiblity that it will have the same hash.

We will introduce the nonce while generating the hash

26



Issue L-5: Additional validation check should be im-
plemented [RESOLVED]

Source: https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/17

Vulnerability Detail

It was observed that an arbitrary adaptor address can be passed into the withdrawFunds
FromAdapter () and processWithdrawals() functions.

File: ByzanlinkWithdrawalManager.sol

160: function withdrawFundsFromAdapter(address adapter) external onlyOperator
< nonReentrant whenNotPaused {

161: if (withdrawalQueue.empty()) revert ErrorsLib.QueueEmpty() ;

162:

File: ByzanlinkWithdrawalManager.sol

190: function processWithdrawals(address adapter) external nonReentrant
— onlyOperator whenNotPaused {

191: if (withdrawalQueue.empty()) revert ErrorsLib.QueueEmpty() ;
192: if (withdrawalQueue._begin >= fundsWithdrawn) revert

— ErrorsLib.NoItemsSentToNAlpha() ;

Impact

Informational. If an operator passes in the wrong address, it might lead to an
unexpected result.

Code Snippet

https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36
102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManage
r.sol#L190

https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36
102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManage
r.sol#L160

Tool Used

Manual Review

27


https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/17
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L190
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L190
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L190
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L160
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L160
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L160

Recommendation

Consider checking whether the adaptor address passed in is an authorized adaptor. This
can be done by relying on the VaultV2’s public isAdapter mapping.

Discussion

Raghul2753
Hi @xiaoming?090

Yes Passing Wrong adapter in might cause issues. We will implement the Vault::isAdapter
check in both processwithdrawls and withdrawFundsFromAdapter to mitigate any issues

28



Issue L-6: Hardcoded expiry duration [RESOLVED]

Source: https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/18

Vulnerability Detail
It was observed that the expiry duration is hardcoded to 10 days.

File: nAlphaAdapter.sol

135: function deallocateAsync(

. .SNIP..

150: // Create withdrawal request

151: uint256 requestld = nextRequestId++;

152:

153: // Create atomic request in nAlpha queue
154: TAtomicQueue.AtomicRequest memory request =
— IAtomicQueue.AtomicRequest ({

1565: deadline: uint64(block.timestamp + 10 days),
156: atomicPrice: uint88(currentPrice),

157: offerAmount: uint96(boringVaultShares),
1568: inSolve: false

159: 14
Impact

Market conditions may change, causing atomic requests to be resolved faster or slower.
However, since the expiry duration is hardcoded, there is no way to adjust the expiry
duration of the atomic request to align with the current market conditions.

Code Snippet

https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36
102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/adapters/nAlphaAdapter.sol
#L155

Tool Used

Manual Review

Recommendation

Instead of hardcoding the expiry duration to 10 days, consider allowing the admin to
modify it,

29


https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/18
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/adapters/nAlphaAdapter.sol#L155
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/adapters/nAlphaAdapter.sol#L155
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/adapters/nAlphaAdapter.sol#L155

Discussion

Raghul2753
Hi @xiaoming2090

Thanks for Pointing out this Issue.
We will Keep it as variable and Create method to modify this Variable through Owner of
nalpha Adapter

30



Issue L-7: Residual allowance if requests are can-
celled [RESOLVED]

Source: https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/19

Vulnerability Detail

It was observed that the allowance is granted to the nAlpha vault whenever a new
atomic request is submitted. This is required because the nAlpha will pull the nAlpha
vault shares from the adaptor if the atomic request is solved.

File: nAlphaAdapter.sol

135: function deallocateAsync(

. .SNIP..

152:

153 // Create atomic request in nAlpha queue

154 : TAtomicQueue.AtomicRequest memory request =

— TIAtomicQueue.AtomicRequest ({

155: deadline: uint64(block.timestamp + 10 days),
156: atomicPrice: uint88(currentPrice),

157: offerAmount: uint96(boringVaultShares),

158: inSolve: false

159: IF

160:

161: IERC20 (address (boringVault)) .safeIncreaseAllowance (
162: address (nAlphaAtomicQueue) ,

163: uint256 (boringVaultShares)

164: E

However, there is no guarantee that all atomic requests will be solved. If the atomic
request is cancelled or expired, the operator will call ByzanlinkWithdrawalManager . cancel
Withdrawals() function. However, the allowance granted to nAlpha vault earlier is not
revoked. Thus, it might end up in a situation where there is excess allowance granted to
the nAlpha vault.

Impact

An excess allowance will be granted to the nAlpha vault.

Code Snippet
Tool Used

Manual Review

3l


https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/19

Recommendation

Consider revoking the unused allowance when the withdrawal requests are cancelled.

Discussion

Raghul2753
Hi @xiaoming?090

Thanks for Bringing this issue Out. We will Write helper functions in Vault and Adapter to
Revoke the Allowance of nAlpha shares to Atomic Queue, whenever we cancle the
withdrawls from the ByzanlinkWithdrawManager

Raghul2753
Hi @xiaoming?090
Need a suggestion on Handling other use cases.

For Instance, if we are going to cancel the Withdrawl request because of USDC
Blocklisted Receiver address, where in case the requests are already processed in nalpha
Side. In this case, We cant revoke the allowance, since the funds are already processed.

Solution: In the nalphaAdapter, we can check the Atomic request and only if it is invalid,
we are revoking the Necessary allowance from the Atomic Queue.

So Revoking allowance wont works for Blacklisted address issue and works only for
Expired atomic requests

S



Issue L-8: Atomic request might not be solved at
the current price [ACKNOWLEDGED]

Source: https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/20

This issue has been acknowledged by the team but won't be fixed at this time.

Vulnerability Detail

It was observed that the adaptor submits an atomic request with the atomic price set to
the current price.

However, the issue is that it is unlikely that this request will be solved at the current price,
as there is no incentive for the solvers to do so. Some incentives are needed (e.g., a
discount) to compensate the solvers for the gas cost, liquidity provisioning, and risk
taken.

File: nAlphaAdapter.sol

135: function deallocateAsync(

. .SNIP..

148: uint256 currentPrice = accountant.getRateInQuoteSafe(asset);
149:

150: // Create withdrawal request

151: uint256 requestId = nextRequestId++;

152:

155 // Create atomic request in nAlpha queue

154: IAtomicQueue.AtomicRequest memory request =

< IAtomicQueue.AtomicRequest ({

155: deadline: uint64(block.timestamp + 10 days),
156: atomicPrice: uint88(currentPrice),

157: offerAmount: uint96(boringVaultShares),

1568: inSolve: false

159: s
Impact

Withdrawal requests cannot be processed if the atomic requests are not solved.

Code Snippet

https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36
102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/adapters/nAlphaAdapter.sol
#1148

33


https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/20
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/adapters/nAlphaAdapter.sol#L148
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/adapters/nAlphaAdapter.sol#L148
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/adapters/nAlphaAdapter.sol#L148

Tool Used

Manual Review

Recommendation

Reconsider if there is any incentive for the current solvers to solve the atomic requests at
the current price. Alternatively, the protocol should consider introducing some incentive.
The AtomicQueue contract includes a safeUpdateAtomicRequest() function that allows
the submitter to specify the discount that may be used.

Discussion
Raghul2753

In the nalpha Atomic queue, there is no Such method and we will discuss with nalpha
regarding this issue

34


https://github.com/Se7en-Seas/boring-vault/blob/4538ccf7706290e38b739e939854897c0f81f6de/src/atomic-queue/AtomicQueue.sol#L252

Issue L-9: Received assets might be lower than the
expectedAssets [RESOLVED]

Source: https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/21

Vulnerability Detail

Assume that the current price of the VaultV2 share is 1.10 at T1.

At T1, a user attempts to withdraw 100 vault shares via the ByzanlinkWithdrawalManager.r
equestWithdrawal () function, and an event records the expectedAssets to be 110 assets
(100 * 1.10). Similarly, the encodedData in Line 95 below also recorded the expectedAssets to
be 110.

It takes some time for the withdrawal request to be processed. During this period, the
price of vault shares might fall. Thus, it's possible that the amount of assets the user will
receive at the end is less than the expectedAssets (110).

File: ByzanlinkWithdrawalManager.sol

071: function requestWithdrawal(

072: uint256 shares,

073: address receiver

074: ) external nonReentrant whenNotPaused returns (uint256 queueIndex) {
075: if (receiver == address(0)) revert ErrorsLib.InvalidReceiver();
076: if (userPending[msg.sender] >= maxPendingPerUser) revert

— ErrorsLib.TooManyPending() ;

077:

078: uint2566 expectedAssets = vault.convertToAssets(shares);

079: if (expectedAssets == 0) revert ErrorsLib.InvalidConversion();
080:

081: // Transfer shares from user to this contract

082: if (!vault.transferFrom(msg.sender, address(this), shares)) revert
«» ErrorsLib.ShareTransferFailed();

083:

084: queueIndex = withdrawalQueue.length();

085:

086: bytes32 requestHash = keccak256(

087: abi.encode(msg.sender, receiver, shares, block.timestamp,
< queueIndex)

088: )

089:

090: bytes memory encodedData = abi.encode(

091: WithdrawQueueStructs.WithdrawRequestData ({

092: user: msg.sender,

093: receiver: receiver,

094: shares: uint128(shares),

095: expectedAssets: uint128(expectedAssets),

096: requestTimestamp: uint64(block.timestamp),

35


https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/21

097: requestHash: requestHash

098: b

099: ) §

100:

101: withdrawalQueue.pushBack(encodedData) ;
102: userPending[msg.sender] ++;

103:

104: emit EventsLib.WithdrawalRequested(
105: queueIndex,

106: msg.sender,

107: receiver,

108: shares,

109: expectedAssets,

110: requestHash,

111: block.timestamp

112: )

1133 }
Impact

Users might expect to receive 110 assets, but in reality, there is no guarantee, as the share
price might fall while the request is being processed.

Code Snippet

https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36
102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManage
r.sol#L78

Tool Used

Manual Review

Recommendation

Ensure that this behavior is documented so that no one has the wrong expectations or
assumptions about the actual amount of assets they will receive at the end.

Discussion

Raghul2753
Hi @xiaoming?090
Thanks for Pointing this out

36


https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L78
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L78
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/ByzanlinkWithdrawalManager.sol#L78

This is already in our Radar and we will clearly document and indicate users that,
expected assets would be based on the current price. Since. we have 10 day cooldown
period, Actual assets will be based on the price on the Settlement Date. Whenever, we
will get the Liquidity, Users fund will be settled. It will be based on the price on the day of
settlement

<5/



Issue L-10: Malicious solvers can steal funds from Vv
aultV2 [ACKNOWLEDGED]

Source: https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/23

This issue has been acknowledged by the team but won't be fixed at this time.

Vulnerability Detail

Assume that the nAlpha adaptor holds a total of 200 nAlpha vault shares, which are
worth 5 USDC each. Thus, the total assets of the VaultV2 is 1000 USDC (200 *5). The total
share/supply of VaultV2 is 1000 shares. Thus, the price of each VaultV2 share is 1.0 now.

The AtomicQueue.solve() function implemented the logic for the solver to solve the
atomic request submitted by the nAlpha adaptor. In Line 325 below, the offer asset
(nAlpha vault shares) will be transferred from the nAlpha adaptor to the solver address.
Assume that 100 nAlpha vault shares have been transferred from the adaptor to the
solver.

Then, in Line 328, it will pass the execution control to the solver address, which might be
a smart contract.

An important point to note is that, at this point, the nAlpha adaptor holds only 100
nAlpha vault shares (50% of the initial amount). The issue is that a malicious solver who
gains execution control and exploits it to mint a new VaultV2 share at a low price, as the
current price of the VaultV2 share is 0.5 USDC. Assume that the malicious solvers mint
1000 VaultV2 shares and paid 500 USDC.

The solver will then process the atomic request as usual and transfer 500 USD to the
adaptor in exchange for 100 nAlpha vault shares. At this point, the adaptor holds:

1. 500 USDC
2. 100 nAlpha vault shares (worth 500 USDC)

The total assets of the VaultV2 is 1000 USDC, and the total supply is 1500 (1000 + 500).
Thus, the price per share is 0.6666 now. The malicious solver can then redeem all their
1000 VaultV2 shares, and earn a profit of around 166.6666 USD (666.666 - 500) at the
expense of the existing holder of VaultV2 shares.

https://github.com/Se7en-Seas/boring-vault/blob/4538ccf7706290e38b739e93985489
7c0f81féde/src/atomic-queue/AtomicQueue.sol#L299

File: AtomicQueue.sol

299: function solve(ERC20 offer, ERC20 want, address[] calldata users, bytes
«» calldata runData, address solver)

300: external

301: nonReentrant

302: requiresAuth

303: {

38


https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/issues/23
https://github.com/Se7en-Seas/boring-vault/blob/4538ccf7706290e38b739e939854897c0f81f6de/src/atomic-queue/AtomicQueue.sol#L299
https://github.com/Se7en-Seas/boring-vault/blob/4538ccf7706290e38b739e939854897c0f81f6de/src/atomic-queue/AtomicQueue.sol#L299
https://github.com/Se7en-Seas/boring-vault/blob/4538ccf7706290e38b739e939854897c0f81f6de/src/atomic-queue/AtomicQueue.sol#L299

304: if (isPaused) revert AtomicQueue__Paused() ;

305:

306: // Save offer asset decimals.

307: uint8 offerDecimals = offer.decimals();

308:

309: uint256 assetsToOffer;

310: uint256 assetsForWant;

Silil ¢ for (uint256 i; i < users.length; ++i) {

312: AtomicRequest storage request =

— userAtomicRequest [users[i]] [offer] [want] ;

Bil3z

314: if (request.inSolve) revert AtomicQueue__UserRepeated(users[i]);
315: if (block.timestamp > request.deadline) revert

< AtomicQueue__RequestDeadlineExceeded(users[i]);

316: if (request.offerAmount == 0) revert

< AtomicQueue__ZeroOfferAmount (users[il);

317:

318: // User gets whatever their atomic price * offerAmount is.
SHOF assetsForWant += _calculateAssetAmount (request.offerAmount,

— request.atomicPrice, offerDecimals);

320:

321: // If all checks above passed, the users request is valid and
— should be fulfilled.

322: assetsToOffer += request.offerAmount;

323: request.inSolve = true;

324: // Transfer shares from user to solver.

325: offer.safeTransferFrom(users[i], solver, request.offerAmount);
326: T

327:

328: IAtomicSolver(solver) .finishSolve(runData, msg.sender, offer, want,
—» assetsToOffer, assetsForWant);

329:

330: for (uint256 i; i < users.length; ++i) {

331: AtomicRequest storage request =

— userAtomicRequest [users[i]] [offer] [want];

332:

J33: if (request.inSolve) {

334: // We know that the minimum price and deadline arguments are
— satisfied since this can only be true if they were.

SS5E

336: // Send user their share of assets.

337: uint256 assetsToUser =

< _calculateAssetAmount (request.offerAmount, request.atomicPrice, offerDecimals);
338:

339: want .safeTransferFrom(solver, users[i], assetsToUser);

. .SNIP..

345: // Set shares to withdraw to O.

346: request.offerAmount = O;

347: request.inSolve = false;

348: } else {

&



349: revert AtomicQueue__UserNotInSolve(users[i]);
350: }

351: }
352: }
Impact

Malicious solvers can steal funds from the VaultV2.

Code Snippet

https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36
102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/VaultV2.sol#L184

Tool Used

Manual Review

Recommendation

Although the AtomicQueue.solve() function is permissioned, it is still essential to
ascertain the trustworthiness of the solvers, as they can technically steal funds from
VaultV2. Proper due diligence on these solvers is necessary.

40


https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/VaultV2.sol#L184
https://github.com/sherlock-audit/2025-11-byzanlink-nov-17th/blob/d076e40867cffc36102bc83fa4748b2e9313c093/ByzanlinkV2Vault/contracts/VaultV2.sol#L184
https://github.com/Se7en-Seas/boring-vault/blob/4538ccf7706290e38b739e939854897c0f81f6de/src/atomic-queue/AtomicQueue.sol#L299

Disclaimers

Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the users’
responsibility.

4]



	Introduction
	Scope
	Final Commit Hash

	Findings
	Issues Found
	Issues Not Fixed and Not Acknowledged


	Issue H-1: Allocation cap tracking underflows when deallocating yield-bearing positions from nAlphaAdapter [RESOLVED]
	Vulnerability Detail
	Impact
	Recommendation
	Discussion

	Issue H-2: Withdrawal queue processing can be DoS'd with spam requests causing out-of-gas errors [RESOLVED]
	Vulnerability Detail
	Impact
	Recommendation
	Discussion

	Issue M-1: Async deallocations may fail when idle asset donations inflate withdrawal amounts beyond adapter's BoringVault shares [RESOLVED]
	Vulnerability Detail
	Impact
	Recommendation
	Discussion

	Issue M-2: Blocklisted receiver address blocks entire withdrawal queue processing [ACKNOWLEDGED]
	Vulnerability Detail
	Impact
	Recommendation
	Discussion

	Issue M-3: Withdrawal processing fails when VaultV2 share price increases between async deallocation and processing [RESOLVED]
	Vulnerability Detail
	Impact
	Recommendation
	Discussion

	Issue M-4: Lack of ability to limit the number of requests per batch leading to DOS [RESOLVED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue M-5: Withdrawal requests cannot be processed even if there is sufficient liquidity [RESOLVED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-1: Withdrawal processing cannot handle distributed liquidity across multiple adapters [ACKNOWLEDGED]
	Vulnerability Detail
	Impact
	Recommendation
	Discussion

	Issue L-2: Deposit fees from BoringVault are unfairly socialized to all VaultV2 shareholders [ACKNOWLEDGED]
	Vulnerability Detail
	Impact
	Recommendation
	Discussion

	Issue L-3: Instant withdrawals incorrectly validate treasury balance including fees instead of actual transfer amount [RESOLVED]
	Vulnerability Detail
	Impact
	Recommendation
	Discussion

	Issue L-4: Multiple request withdrawals might have the same hash. [RESOLVED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-5: Additional validation check should be implemented [RESOLVED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-6: Hardcoded expiry duration [RESOLVED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-7: Residual allowance if requests are cancelled [RESOLVED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-8: Atomic request might not be solved at the current price [ACKNOWLEDGED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-9: Received assets might be lower than the expectedAssets [RESOLVED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-10: Malicious solvers can steal funds from VaultV2 [ACKNOWLEDGED]
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation

	Disclaimers

